Với lời giải Toán 8 trang 65 Tập 2 chi tiết trong Bài 1: Hai tam giác đồng dạng sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:
Giải Toán 8 Bài 1: Hai tam giác đồng dạng
Thực hành 3 trang 65 Toán 8 Tập 2: Quan sát Hình 8, cho biết DC // MP, EF // MQ.
a) Chứng minh rằng ΔEPF ᔕ ΔDCQ.
b) ΔICF có đồng dạng ΔMPQ không? Tại sao?
Lời giải:
a) Ta có DC // MP nên ΔDCQ ᔕ ΔMPQ.
Ta có EF // MQ nên ΔEPF ᔕ ΔMPQ.
Do đó ΔEPF ᔕ ΔDCQ.
b) Ta có IF // DQ nên ΔICF ᔕ ΔDCQ.
Do đó ΔICF ᔕ ΔMPQ.
Vận dụng trang 65 Toán 8 Tập 2: Trong Hình 10, cho biết ABCD là hình bình hành.
a) Chứng minh rằng ΔIEB ᔕ ΔIDA.
b) Cho biết CB = 3BE và AI = 9 cm. Tính độ dài DC.
Lời giải:
a) ABCD là hình bình hành suy ra BE // AD.
Do đó ΔIEB ᔕ ΔIDA.
b) ΔIEB ᔕ ΔIDA suy ra
Ta có IB // CD nên ΔIEB ᔕ ΔDEC
Do đó nên
Suy ra ⇒ IB = 3 ⇒ AB = IA + IB = 12
Ta có DC = AB = 12 cm.
Vậy DC = 12 cm.
Bài tập
a) Hai tam giác bằng nhau thì đồng dạng với nhau.
b) Hai tam giác đồng dạng với nhau thì bằng nhau.
Lời giải:
a) Xét khẳng định a: Hai tam giác bằng nhau thì đồng dạng với nhau.
Hai tam giác bằng nhau có các cặp góc tương ứng bằng nhau và các cạnh tương ứng bằng nhau nên chúng đồng dạng theo tỉ số 1.
Vậy khẳng định a đúng.
b) Xét khẳng định b: Hai tam giác đồng dạng với nhau thì bằng nhau.
Hai tam giác đồng dạng có các cặp góc tương ứng bằng nhau và các cặp cạnh tương ứng tỷ lệ với nhau theo tỉ số k.
• Với k = 1 thì các cạnh tương ứng của hai tam giác đó bằng nhau nên hai tam giác đó bằng nhau.
• Với k ≠ 1 thì các cạnh tương ứng của hai tam giác đó không bằng nhau nên hai tam giác đó không bằng nhau.
Vậy khẳng định b sai.
Lời giải:
Trên cạnh AB lấy B' là trung điểm của AB
Qua B' kẻ đường thẳng song song với BC cắt AC tại C'
Ta có: B'C' // BC nên ΔAB′C′ ᔕ ΔABC theo tỉ số đồng dạng .
b) Trong Hình 12, cho biết ΔDEF ᔕ ΔD′E′F′. Tính số đo và
c) Trong Hình 13, cho biết ΔMNP ᔕ ΔM′N′P′. Tính độ dài các đoạn thẳng MN và M'P'.
Lời giải:
a) ΔABC ᔕ ΔA′B′C′ nên ta có:
•
• ; ; .
b) ΔDEF ᔕ ΔD′E′F′ nên ta có:
•
• .
Vậy ; .
c) ΔMNP ᔕ ΔM′N′P′ nên ta có
hay .
Do đó .
Xem thêm các lời giải bài tập Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:
Khám phá 2 trang 62 Toán 8 Tập 2: Cho tam giác ABC và tam giác A'B'C' như Hình 2...
Thực hành 1 trang 63 Toán 8 Tập 2: Quan sát Hình 3, cho biết ΔAMN ᔕ ΔABC...
Khám phá 4 trang 64 Toán 8 Tập 2: Quan sát Hình 5, biết MN // BC. Hãy điền vào cho thích hợp...
Thực hành 3 trang 65 Toán 8 Tập 2: Quan sát Hình 8, cho biết DC // MP, EF // MQ...
Vận dụng trang 65 Toán 8 Tập 2: Trong Hình 10, cho biết ABCD là hình bình hành...
Bài 4 trang 66 Toán 8 Tập 2: Trong Hình 14, cho biết AB // CD...
Bài 5 trang 66 Toán 8 Tập 2: Cho ΔABC ᔕ ΔDEF theo tỉ số đồng dạng ...