Giải Toán 11 trang 64 Tập 2 Cánh diều

158

Với lời giải Toán 11 trang 64 Tập 2 chi tiết trong Bài 2: Các quy tắc tính đạo hàm sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 2: Các quy tắc tính đạo hàm

Câu hỏi khởi động trang 64 Toán 11 Tập 2: Ta có thể tính đạo hàm của hàm số bằng cách sử dụng định nghĩa. Tuy nhiên, cách làm đó là không thuận lợi khi hàm số được cho bằng những công thức phức tạp. Trong thực tiễn, để tính đạo hàm của một hàm số ta thường sử dụng các quy tắc tính đạo hàm để đưa việc tính toán đó về tính đạo hàm của những hàm số sơ cấp cơ bản.

Đạo hàm của những hàm số sơ cấp cơ bản là gì?

Làm thế nào để thực hiện được các quy tắc đạo hàm?

Lời giải:

Để trả lời được các câu hỏi trên, chúng ta cùng tìm hiểu bài học này.

I. Đạo hàm của một số hàm số sơ cấp cơ bản

Hoạt động 1 trang 64 Toán 11 Tập 2: a) Tính đạo hàm của hàm số y = x2 tại điểm x0 bất kì bằng định nghĩa.

b) Dự đoán đạo hàm của hàm số y = xn tại điểm x bất kì.

Lời giải:

a) ⦁ Xét ∆x là số gia của biến số tại điểm x0.

Ta có ∆y = f(x0 + ∆x) – f(x0) = (x0 + ∆x)2 – (x0)2

              =x02+2x0Δx+Δx2x02

              =2x0Δx+Δx2=Δx2x0+Δx.

Suy ra ΔyΔx=Δx2x0+ΔxΔx=2x0+Δx.

⦁ Ta thấy limΔx0ΔyΔx=limΔx02x0+Δx=2x0+0=2x0.

Vậy đạo hàm của hàm số y = x2 tại điểm x0 bất kì là y’(x0) = 2x0.

b) Dự đoán: y’ = nxn – 1.

Luyện tập 1 trang 64 Toán 11 Tập 2: Cho hàm số y = x22

a) Tính đạo hàm của hàm số trên tại điểm x bất kì.

b) Tính đạo hàm của hàm số trên tại điểm x0 =1

Lời giải:

a) Ta có: y' = (x22)' = 22x21

b) Đạo hàm của hàm số tại điểm x0 = –1 là y'(–1) = 22 . (–1)21 = 22 . (–1) = –22

Đánh giá

0

0 đánh giá