Giải Toán 11 trang 89 Tập 2 Chân trời sáng tạo

317

Với lời giải Toán 11 trang 89 Tập 2 chi tiết trong Bài 1: Biến cố giao và quy tắc nhân xác suất sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 1: Biến cố giao và quy tắc nhân xác suất

Hoạt động khởi động trang 89 Toán 11 Tập 2: Nguyệt và Nhi cùng tham gia một cuộc thi bắn cung. Xác suất bắn trúng tâm bia của Nguyệt là 0,9 và của Nhi là 0,8. Tính xác suất để cả hai bạn cùng bắn trúng tâm bia.

Lời giải:

Sau bài học này, ta giải quyết được bài toán này như sau:

Ta sẽ xét trong trường hợp Nguyệt và Nhi bắn độc lập với nhau.

Gọi biến cố A: “Nguyệt bắn trúng tâm bia”.

Biến cố B: “Nhi bắn trúng tâm bia”.

Biến cố AB: “Cả hai bạn bắn trúng tâm bia”.

Theo đề có: P(A) = 0,9 và P(B) = 0,8.

Vì A, B độc lập nên P(AB) = P(A)P(B) = 0,9 × 0,8 = 0,72.

Vậy xác suất để cả hai bạn bắn trúng tâm bia là 0,72.

1. Biến cố giao

Hoạt động khám phá 1 trang 89 Toán 11 Tập 2: Gieo hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 5”, B là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc bằng 6”.

a) Hãy viết tập hợp mô tả các biến cố trên.

b) Hãy liệt kê các kết quả của phép thử làm cho cả hai biến cố A và B cùng xảy ra.

Lời giải:

a) A = {(1; 4); (2; 3); (3; 2); (4; 1)}.

B = {(1; 6); (2; 3); (3; 2); (6; 1)}.

b) Các kết quả của phép thử làm cho cả hai biến cố A và B cùng xảy ra là (2; 3) và (3; 2).

Thực hành 1 trang 89 Toán 11 Tập 2: Tiếp tục với phép thử ở Ví dụ 1.

a) Gọi D là biến cố “Số chấm xuất hiện trên con xúc xắc thứ nhất là 3”. Hãy xác định các biến cố AD, BD và CD.

b) Gọi A¯ là biến cố đối của biến cố A. Hãy viết tập hợp mô tả các biến cố giao A¯B  A¯C

Lời giải:

a) Ta có D = {(3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6)}.

Theo hoạt động khám phá 1 và Ví dụ 1, ta có:

A = {(1; 4); (2; 3); (3; 2); (4; 1)}.

B = {(1; 6); (2; 3); (3; 2); (6; 1)}.

C = {(1; 6); (6; 1); (1; 5); (5; 1); (1; 4); (4; 1); (1; 3); (3; 1); (1; 2); (2; 1); (1; 1)}.

Khi đó:

AD = {(3; 2)}; BD = {(3; 2)}; CD = {(3; 1)}.

b) A¯B = {(1; 6); (6; 1)}.

A¯C = {(1; 6); (6; 1); (1; 5); (5; 1); (1; 3); (3; 1); (1; 2); (2; 1); (1; 1)}.

2. Hai biến cố xung khắc

Hoạt động khám phá 2 trang 89 Toán 11 Tập 2: Gieo hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 5”, gọi B là biến cố “Xuất hiện hai mặt có cùng số chấm”. Hai biến cố A và B có thể đồng thời cùng xảy ra không?

Lời giải:

Ta có A = {(1; 4); (2; 3); (3; 2); (4; 1)}.

B = {(1; 1); (2; 2); (3; 3); (4; 4); (5; 5); (6; 6)}.

AB = ∅ .

Do đó A và B không đồng thời xảy ra.

Đánh giá

0

0 đánh giá