Với lời giải Toán 11 trang 65 Tập 2 chi tiết trong Bài tập cuối chương 7 sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 Bài tập cuối chương 7
Lời giải:
Kẻ OD BC tại D.
Có OA OB, OA OC nên OA (OBC), suy ra OA BC mà OD BC nên
BC (OAD).
Kẻ OE AD tại E.
Vì BC (OAD) nên BC OE mà OE AD nên OE (ABC).
Do đó d(O, (ABC)) = OE.
Xét tam giác OBC vuông tại O, OD là đường cao có:
.
Vì OA (OBC) nên OA OD.
Xét tam giác AOD vuông tại O, OE là đường cao nên
.
Vậy d(O, (ABC)).
a) Chứng minh rằng BC (AID).
b) Kẻ đường cao AH của tam giác AID. Chứng minh rằng AH (BCD).
c) Kẻ đường cao IJ của tam giác AID. Chứng minh rằng IJ là đường vuông góc chung của AD và BC.
Lời giải:
a) Vì tam giác ABC cân tại A, AI là trung tuyến nên AI đồng thời là đường cao hay AI BC.
Vì tam giác BCD cân tại D, DI là trung tuyến nên DI đồng thời là đường cao hay DI BC.
Có AIBC và DI BC nên BC (AID).
b) Do AH là đường cao của tam giác AID nên AH DI.
Vì BC (AID) nên BC AH mà AH DI nên AH (BCD).
c) Vì BC (AID) nên BC IJ, mà IJ là đường cao của tam giác AID nên IJ AD. Do đó IJ là đường vuông góc chung của AD và BC.
a) Chứng minh rằng (SBC) (SAB).
b) Tính theo a khoảng cách từ điểm A đến đường thẳng SC và khoảng cách từ điểm A đến mặt phẳng (SBC).
Lời giải:
a) Do tam giác ABC vuông tại B nên AB BC.
Vì SA (ABC) nên SA BC mà AB BC nên BC (SAB), suy ra (SBC) (SAB).
b) Kẻ AD SC tại D. Khi đó d(A, SC) = AD.
Vì SA (ABC) nên SA AC nên tam giác SAC vuông tại A.
Xét tam giác ABC vuông tại B, sin =
AC = = 2a.
Xét tam giác SAC vuông tại A, AD là đường cao, có:
.
Vậy d(A, SC) .
Kẻ AE SB tại E.
Vì BC (SAB) nên BC AE mà AE SB nên AE (SBC).
Khi đó d(A, (SBC)) = AE.
Xét tam giác ABC vuông tại B, có AB = = a.
Vì SA (ABC) nên SA AB, suy ra tam giác SAB vuông tại A.
Xét tam giác SAB vuông tại A, AE là đường cao, có: .
AE = a
Vậy d(A, (SBC)) = a .
a) Tính theo a thể tích của khối chóp S.ABCD.
b) Tính khoảng cách giữa hai đường thẳng AD và SC.
Lời giải:
a) Kẻ SE AD tại E. Vì tam giác SAD vuông cân tại S nên E là trung điểm của AD.
Có (SAD) (ABCD), (SAD) (ABCD) = AD, SE AD nên SE (ABCD).
Vì tam giác SAD vuông cân tại S, SE là trung tuyến nên SE = .
Khi đó .
b) Do ABCD là hình vuông nên AD // BC mà BC (SBC) nên AD // (SBC).
Khi đó d(AD, SC) = d(AD, (SBC)) = d(E, (SBC)).
Kẻ EF // AB (F thuộc BC). Khi đó EF BC (vì AB BC).
Mà SE (ABCD) nên SE BC mà EF BC nên BC (SEF).
Lại có BC (SBC) nên (SBC) (SEF) và (SBC) (SEF) = SF.
Kẻ EG SF tại G nên EG (SBC). Khi đó d(E, (SBC)) = EG.
Do ABCD là hình vuông nên EF = AB = a.
Xét tam giác SEF vuông tại E, EG là đường cao, có
EG = .
Vậy d(AD, SC) = .
a) Tính thể tích của khối hộp ABCD.A'B'C'D'.
b) Tính khoảng cách từ A đến mặt phẳng (A'BD).
Lời giải:
a) Gọi O là giao điểm của AC và BD.
Vì hình hộp ABCD.A'B'C'D' có độ dài tất cả các cạnh bằng a nên ABCD là hình thoi, suy ra AO = OC và AC BD.
Có SABD = .AO.BD = .CO.BD = SBCD. Do đó SABCD = 2SABD.
Mà SABD = .AB.AD.sin = .a.a.sin60o = . Do đó SABCD = .
Vậy .
b) Vì AO BD mà AA' (ABCD) nên AA' BD. Do đó BD (AOA').
Suy ra (A'BD) (AOA').
Kẻ AE A'O tại E. Vì (A'BD) (AOA'), (A'BD) (AOA') = A'O và AE A'O nên AE (A'BD). Do đó d(A, (A'BD)) = AE.
Xét tam giác ABD có AB = AD = a nên tam giác ABD là tam giác cân tại A mà nên tam giác ABD đều, suy ra BD = a mà BO = .
Xét tam giác AOB vuông tại O, có AO = = .
Vì AA' (ABCD) nên AA' AO hay tam giác A'AO vuông tại A.
Xét tam giác A'AO vuông tại A có
.
Vậy d(A, (A'BD)) = .
Lời giải:
a) Gọi O là giao điểm của AC và BD.
Do A'.ABCD là hình chóp đều có tất cả các cạnh đều bằng nhau và bằng a nên A'O (ABCD).
Vì ABCD là hình vuông cạnh a nên SABCD = a2.
Xét tam giác ABC vuông tại B, có AC = mà O là trung điểm của AC nên AO = .
Xét tam giác A'AO vuông tại O, có A'O = .
Khi đó .
Ta có .
Khi đó ta thấy khối chóp A'.BB'C'C và khối lăng trụ AA'D'D.BB'C'C có chung đường cao và đáy nên .
Lời giải:
Gọi O là giao điểm của AC và BD.
Vì hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) nên SO (ABCD).
Khi đó d(S, (ABCD)) = SO.
Kẻ AH DC tại H, BK DC tại K.
Khi đó ABKH là hình chữ nhật nên AB = HK = a.
Xét AHD và BKC có: AD = BC = a, , (do ABCD là hình thang cân).
Do đó AHD = BKC, suy ra DH = CK = ;
CH = HK + CK = a+.
Xét tam giác AHD vuông tại H, có AH = .
Xét tam giác AHC vuông tại H, có AC = .
Vì AB // CD nên .
Xét tam giác SOA vuông tại O, có SO = .
Khi đó d(S, (ABCD)) .
Ta có .
Vậy .
Lời giải:
Gọi H là hình chiếu vuông góc của A lên mặt đất. Khi đó AH (BCH).
Ta có góc giữa mặt đất và đường thẳng chứa tia sáng mặt trời là .
Xét tam giác AHB vuông tại H, có AH = AB . sin80° = 10 . sin80° (m).
Áp dụng định lí Côsin trong tam giác ABC, có:
AC2 = AB2 + BC2 – 2.AB.BC.cos
= 102 + 122 – 2.10.12.cos120° = 364
⇒ AC = 2 (m).
Xét tam giác AHC vuông tại H, có .
Vậy góc giữa mặt đất và đường thẳng chứa tia sáng mặt trời tại thời điểm nói trên khoảng 31°.
Xem thêm các lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 7.33 trang 64 Toán 11 Tập 2: Cho các phát biểu sau:...
Bài 7.35 trang 64 Toán 11 Tập 2: Cho hình chóp tứ giác đều S.ABCD. Phát biểu nào sau đây là đúng?..
Bài 7.36 trang 64 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA (ABCD)....
Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác: