Giải SBT Toán 11 trang 32 Tập 1 Cánh diều

111

Với lời giải SBT Toán 11 trang 32 Tập 1 chi tiết trong Bài tập cuối chương 1 sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài tập cuối chương 1

Bài 65 trang 32 SBT Toán 11 Tập 1Giá trị của biểu thức A = (2sin x – cos x)2 + (2cos x + sin x)2 bằng:

A. 5.

B. 3.

C. 4.

D. 2.  

Lời giải:

Đáp án đúng là: A

Ta có A = (2sin x – cos x)2 + (2cos x + sin x)2

= 4sin2 x – 4sin x cos x + cos2 x + 4cos2 x + 4cos x sin x + sin2 x

= 5sin2 x + 5cos2 x

= 5(sin2 x + cos2 x)

= 5 . 1 = 5.

Bài 66 trang 32 SBT Toán 11 Tập 1Nếu hai góc a và b có tan a = 13  và tan b = 12  thì giá trị của tan(a – b) bằng:

A. 17 .

B. 15 .

C. 17 .

D. 1.

Lời giải:

Đáp án đúng là: C

Ta có tanab=tanatanb1+tanatanb=13121+13.12=1676=17 .

Bài 67 trang 32 SBT Toán 11 Tập 1Nếu cos2α=36  thì giá trị của biểu thức cosα+π3cosαπ3  bằng:

A. 33 .

B. 3+312 .

C. 33 .

D. 3+312 .

Lời giải:

Đáp án đúng là: B

Ta có cosα+π3cosαπ3

Bài 67 trang 32 SBT Toán 11 Tập 1

=12cos2α+cos2π3

=123612=3+312.

Bài 68 trang 32 SBT Toán 11 Tập 1Phương trình cos 2x = 0 có các nghiệm là:

A. x=π2+kπ  k .

B. x=π4+kπ  k .

C. x=π4+kπ2  k .

D. x=kπ  k .

Lời giải:

Đáp án đúng là: C

Ta có cos 2x = 0 2x=π2+kπ  k x=π4+kπ2  k  .

Bài 69 trang 32 SBT Toán 11 Tập 1Phương trình tan x = 13 có các nghiệm là: 

A. x=π6+kπ  k .

B. x=π6+kπ  k .

C. x=π3+kπ  k .

D. x=π3+kπ  k.

Lời giải:

Đáp án đúng là: B

Do tanπ6=13  nên tan x = 13 tanx=tanπ6

x=π6+kπ   k.

Bài 70 trang 32 SBT Toán 11 Tập 1Chứng minh mỗi đẳng thức sau là đúng:

a) sin 45° . cos 30° + cos(– 45°) . sin(– 30°) = sin 15°;

b) tan9π20=1+tanπ51tanπ5 .

Lời giải:

a) Ta có VT = sin 45° . cos 30° + cos(– 45°) . sin(– 30°)

                   = sin 45° . cos 30° + cos 45° . (– sin 30°)

= sin 45° . cos 30° – cos 45° . sin 30°

= sin(45° – 30°)

= sin 15° = VP  (đpcm).

b) Ta có tan9π20=tanπ4+π5=tanπ4+tanπ51tanπ4.tanπ5=1+tanπ51tanπ5.

Vậy tan9π20=1+tanπ51tanπ5  (đpcm).

Bài 71 trang 32 SBT Toán 11 Tập 1Cho sin(45°– α) = 122 .

a) Chứng minh rằng sin245°α=1sin2α2 .

b) Tính sin 2α.

Lời giải:

a) Sử dụng công thức hạ bậc và quan hệ lượng giác của hai góc phụ nhau, ta có:

sin245°α=1cos90°2α2=1sin2α2.

Vậy sin245°α=1sin2α2 (đpcm).

b) Vì sin(45°– α) = 122  nên sin2(45°– α) = 1222=18 .

Theo câu a) ta có sin245°α=1sin2α2 , do đó 1sin2α2=18 .

Từ đó suy ra sin2α=34 .

Bài 72 trang 32 SBT Toán 11 Tập 1Giải phương trình:

a) sin2xπ6=12 ;

b) sinx3+π2=32 ;

c) cos2x+π5=22 ;

d) 2cosx2+3=0 ;

e) 3tan2x+π31=0 ;

g) cot(3x + π) = – 1.

Lời giải:

a) Do sinπ6=12  nên sin2xπ6=12 sin2xπ6=sinπ6

 Giải phương trình trang 32 SBT Toán 11

b) Do sinπ3=32  nên sinx3+π2=32 sinx3+π2=sinπ3

 Giải phương trình trang 32 SBT Toán 11

c) Do cosπ4=22  nên  cos2x+π5=22 cos2x+π5=cosπ4

 Giải phương trình trang 32 SBT Toán 11

d) 2cosx2+3=0

cosx2=32

  cosx2=cos5π6    (do cos5π6=32 )

 Giải phương trình trang 32 SBT Toán 11

e) 3tan2x+π31=0

tan2x+π3=13

tan2x+π3=tanπ6            (do tanπ6=13 )

2x+π3=π6+kπ    k

2x=π6+kπ    k

x=π12+kπ2    k.

g) Do cotπ4=1  nên cot(3x + π) = – 1 cot3x+π=cotπ4

3x+π=π4+kπ   k

3x=5π4+kπ   k

x=5π12+kπ3   k.

Đánh giá

0

0 đánh giá