Giải Toán 8 trang 41 Tập 1 Chân trời sáng tạo

1.4 K

Với lời giải Toán 8 trang 41 Tập 1 chi tiết trong Bài tập cuối chương 1 trang 40 sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài tập cuối chương 1 trang 40

Bài 11 trang 41 Toán 8 Tập 1: Tính giá trị của đa thức P = xy2z – 2x2yz2 + 3yz + 1 khi x = 1, y = –1, z = 2.

Lời giải:

Thay x = 1, y = –1 và z = 2 vào đa thức P ta được:

P = 1.(–1)2.2 – 2.12.(–1).22 + 3.(–1).2 + 1

   = 2 + 8 – 6 + 1

   = 5.

Vậy P = 5 khi x = 1, y = –1, z = 2.

Bài 12 trang 41 Toán 8 Tập 1: Cho đa thức P = 3x2y – 2xy2 – 4xy + 2.

a) Tìm đa thức Q sao cho Q – P = –2x3y + 7x2y + 3xy.

b) Tìm đa thức M sao cho P + M = 3x2y2 – 5x2y + 8xy.

Lời giải:

a) Ta có: Q – P = –2x3y + 7x2y + 3xy.

Suy ra Q = P + (–2x3y + 7x2y + 3xy)

               = 3x2y – 2xy2 – 4xy + 2 –2x3y + 7x2y + 3xy

               = (3x2y + 7x2y) – 2xy2 + (– 4xy + 3xy) + 2 –2x3y

               = 10x2y – 2xy2 – xy + 2 –2x3y.

Vậy Q = 10x2y – 2xy2 – xy + 2 –2x3y.

b) Ta có: P + M = 3x2y2 – 5x2y + 8xy.

Suy ra M = 3x2y2 – 5x2y + 8xy – P

                = 3x2y2 – 5x2y + 8xy – (3x2y – 2xy2 – 4xy + 2)

                = 3x2y2 – 5x2y + 8xy – 3x2y + 2xy2 + 4xy – 2

                = 3x2y2 + (– 5x2y – 3x2y) + (8xy + 4xy) + 2xy2 – 2

                = 3x2y2 –8x2y + 12xy + 2xy2 – 2.

Vậy M = 3x2y2 –8x2y + 12xy + 2xy2 – 2.

Bài 13 trang 41 Toán 8 Tập 1: Thực hiện các phép tính sau:

a) x2y(5xy – 2x2y – y2);

b) (x – 2y)(2x2 + 4xy).

Lời giải:

a) x2y(5xy – 2x2y – y2)

= x2y.5xy – x2y.2x2y  – x2y.y2

= 5x3y2 – 2x4y2 – x2y3.

b) (x – 2y)(2x2 + 4xy)

= x(2x2 + 4xy) – 2y.(2x2 + 4xy)

= 2x3 + 4x2y – 4x2y – 8xy2

= 2x3 – 8xy2.

Bài 14 trang 41 Toán 8 Tập 1: Thực hiện các phép tính sau:

a) 18x4y3 : 12(–x)3y;

b) x2y22xy3:12xy2.

Lời giải:

a) 18x4y3 : 12(–x)3y

= 18x4y3 : [12.(–x3)y]

= 18x4y3 : (–12.x3y)

= [18 : (–12)] . (x4 : x3) . (y3 : y)

32xy2.

b) x2y22xy3:12xy2

=x2y22:12.x:x.y3:y2

= x2y2 – 4y.

Bài 15 trang 41 Toán 8 Tập 1: Tính:

a) (2x + 5)(2x – 5) – (2x + 3)(3x – 2);

b) (2x – 1)2 – 4(x – 2)(x + 2).

Lời giải:

a) (2x + 5)(2x – 5) – (2x + 3)(3x – 2)

= 4x2 – 25 – (6x2 – 4x + 6x – 6)

= 4x2 – 25 – (6x2 + 2x – 6)

= 4x2 – 25 – 6x2 – 2x + 6

= (4x2 – 6x2) – 2x + (– 25 + 6)

= –2x2 – 2x – 19.

b) (2x – 1)2 – 4(x – 2)(x + 2)

= 4x2 – 4x + 1 – 4(x2 – 4)

= 4x2 – 4x + 1 – 4x2 + 16

= (4x– 4x2) – 4x + (1 + 16)

= – 4x + 17.

Bài 16 trang 41 Toán 8 Tập 1: Phân tích đa thức sau thành nhân tử.

a) (x – 1)2 – 4;

b) 4x2 + 12x + 9;

c) x3 – 8y6;

d) x5 – x3 – x2 + 1;

e) –4x3 + 4x2 + x – 1;

g) 8x3 + 12x2 + 6x + 1.

Lời giải:

a) (x – 1)2 – 4

= (x – 1)2 – 22

= (x – 1 + 2)(x – 1 – 2)

= (x + 1)(x – 3).

b) 4x2 + 12x + 9

= (2x2) + 2.2x.3 + 32

= (2x + 3)2.

c) x3 – 8y6

= x3 – (2y2)3

= (x3 – 2y2)[(x3)2 + x3.2y2 + (2y2)2]

= (x3 – 2y2)(x6 + 2x3y2 + 4y4).

d) x5 – x3 – x2 + 1

= (x5 – x3) – (x2 – 1)

= x3(x2 – 1) – (x2 – 1)

= (x2 – 1)(x3 – 1)

= (x + 1)(x – 1).(x – 1).(x2 + x + 1)

= (x + 1)(x – 1)2(x2 + x + 1).

e) –4x3 + 4x2 + x – 1

= (–4x3 + 4x2) + (x – 1)

= –4x2(x – 1) + (x – 1)

= (x – 1)(–4x2 + 1)

= (x – 1)[12 – (2x)2]

= (x – 1)(1 + 2x)(1 – 2x).

g) 8x3 + 12x2 + 6x + 1

= (2x)3 + 3.(2x)2.1 + 3.2x.12 + 13

= (2x + 1)3.

Bài 17 trang 41 Toán 8 Tập 1: Cho x + y = 3 và xy = 2. Tính x3 + y3.

Lời giải:

Ta có: x3 + y3

= (x + y)(x2 – xy + y2)

= (x + y)[(x2 + 2xy + y2) – 3xy]

= (x + y)[(x2 + 2xy + y2) – 3xy]

= (x + y)[(x + y)2 – 3xy]

Thay x + y = 3 và xy = 2 vào đa thức trên ta có:

x3 + y3 = 3.(32 – 3.2) = 3.(9 – 6) = 3.3 = 9.

Bài 18 trang 41 Toán 8 Tập 1: Thực hiện các phép tính sau:

a) 2x21x2+x23x2;

b) xx+y+yxy;

c) 1x12x21;

d) x+2x2+xyy2xy+y2;

e) 12x23x14x29;

g) 2x9x2+1x31x+3;

Lời giải:

a) 2x21x2+x23x2

=2x21x23x2=x24x2

=x+2x2x2=x+2

b) xx+y+yxy

=xxyx+yxy+yx+yx+yxy

=x2xy+xy+y2x+yxy

=x2+y2x+yxy

c) 1x12x21

=1x12x+1x1

=x+1x+1x12x+1x1

=x+12x+1x1

=x1x+1x1

d) x+2x2+xyy2xy+y2

=x+2xx+yy2yx+y

=x+2yxyx+yy2xxyx+y

=xy+2yxy2xxyx+y

=xy+2yxy+2xxyx+y

=2y+2xxyx+y=2x+yxyx+y=2xy

e) 12x23x14x29

=1x2x312x+32x3

=2x+3x2x32x+3xx2x+32x3

=2x+3xx2x32x+3

=x+3x2x32x+3

g) 2x9x2+1x31x+3

=2xx29+1x31x+3

=2xx+3x3+1x31x+3

=2xx+3x3+x+3x+3x3x3x+3x3

=2x+x+3x3x+3x3

=2x+x+3x+3x+3x3

=2x+6x+3x3

=2x3x+3x3=2x+3

Bài 19 trang 41 Toán 8 Tập 1: Thực hiện các phép tính sau:

a) 8y3x2.9x24y2

b) 3x+x2x2+x+1.3x33x+3

c) 2x2+4x3.3x+1x1:x2+262x

d) 2x23y3:4x321y2

e) 2x+10x364:x+522x8

g) 1x+yx+yxyxy1x2:yx

Lời giải:

a) 8y3x2.9x24y2=8y.9x23x2.4y2=2.4y.3.3x23x2.y.4y=6y

b) 3x+x2x2+x+1.3x33x+3

=x3+xx2+x+1.3x31x+3

=x3+x.3x1x2+x+1x2+x+1.x+3

=3xx11=3x23x

c) 2x2+4x3.3x+1x1:x2+262x

=2x2+2.3x+1x3.x1.62xx2+2

=2x2+2.3x+1.2x3x3.x1.x2+2

=2.3x+1.2x1=43x+1x1

d) 2x23y3:4x321y2

=2x23y3.21y24x3

=2x2.21y23y3.4x3

=2x2.7.3y23y2.y.2x2.2x

=72xy;

e) 2x+10x364:x+522x8

=2x+5x343.2x8x+52

=2x+5.2x4x4x2+4x+16.x+52

=2.2x2+4x+16.x+5

=4x+5x2+4x+16;

g) 1x+yx+yxyxy1x2:yx

=1x+yx+yxyx+y1x2.xy

=1x+y.x+yxy1x+y.x+y1xy

=1xy11xy

=1xy1xy1=1.

Bài 20 trang 41 Toán 8 Tập 1: Hôm qua, thanh long được bán với giá a đồng mỗi kilôgam. Hôm nay, người ta đã giảm giá 1 000 đồng cho mỗi kilôgam thanh long. Với cùng số tiền b đồng thì hôm nay mua được nhiều hơn bao nhiêu kilôgam thanh long so với hôm qua?

Lời giải:

• Với số tiền b đồng, hôm qua sẽ mua được số kilôgam thanh long (giá a đồng mỗi kilôgam) là: ba (kg).

• Hôm nay giá thanh long giảm 1 000 đồng cho mỗi kilôgam nên giá thanh long hôm nay là a – 1 000 (đồng).

Khi đó với số tiền b đồng, hôm nay mua được số kilôgam thanh long là: ba - 1000 (kg).

• Hôm nay mua được nhiều hơn hôm qua số kilôgam thanh long là:

ba1000ba=baaa1000ba1000aa1000

                      =baba1000baa1000=baba+1000baa1000

                     =1000baa1000 (kg).

Vậy hôm nay mua được nhiều hơn hôm qua  kilôgam thanh long.

Bài 21 trang 41 Toán 8 Tập 1: Trên một dòng sông, một con thuyền đi xuôi dòng với tốc độ (x + 3) km/h và đi ngược dòng với tốc độ (x − 3) km/h (x > 3).

a) Xuất phát từ bến A, thuyền đi xuôi dòng trong 4 giờ, rồi đi ngược dòng trong 2 giờ. Tính quãng đường thuyền đã đi. Lúc này thuyền cách bến A bao xa?

b) Xuất phát từ bến A, thuyền đi xuôi dòng đến bến B cách bến A 15 km, nghỉ 30 phút, rồi quay về bến A. Sau bao lâu kể từ lúc xuất phát thì thuyền quay về đến bến A?

Lời giải:

a) Thuyền đi xuôi dòng trong 4 giờ được quãng đường là: 4(x + 3) (km).

Thuyền đi ngược dòng trong 2 giờ được quãng đường là: 2(x – 3) (km).

Quãng đường thuyền đã đi là:

4(x + 3) + 2(x – 3) = 4x + 12 + 2x – 6 = 6x + 6 (km).

Lúc này thuyền cách bến A là:

4(x + 3) – 2(x – 3) = 4x + 12 – 2x + 6 = 2x + 18 (km).

b) Thời gian thuyền đi xuôi dòng từ A đến B là: 15x+3 (giờ).

Thời gian thuyền đi ngược dòng từ B về A là: 15x-3 (giờ).

Đổi 30 phút = 0,5 giờ.

Vậy thời gian kể từ khi thuyền xuất phát từ A đến B rồi quay về bến A là:

15x+3 + 0,5 + 15x-3

=15x3x+3x3+0,5.x+3x3x+3x3+15x+3x+3x3

=15x45+0,5x29+15x+45x+3x3

=15x45+0,5x24,5+15x+45x+3x3

=0,5x2+30x4,5x+3x3 

Vậy sau 0,5x2+30x4,5x+3x3 giờ kể từ lúc xuất phát thì thuyền quay về đến bến A.

Đánh giá

0

0 đánh giá