Giải Toán 11 trang 76 Tập 1 Cánh diều

384

Với lời giải Toán 11 trang 76 Tập 1 chi tiết trong Bài 3: Hàm số liên tục sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 3: Hàm số liên tục

Luyện tập 3 trang 76 Toán 11 Tập 1: Hàm f(x)=x+2x8có liên tục trên mỗi khoảng (– ∞; 8), (8; + ∞) hay không?

Lời giải:

Do f(x)=x+2x8nên hàm số liên tục trên mỗi khoảng (– ∞; 8), (8; + ∞).

Hoạt động 4 trang 76 Toán 11 Tập 1: Cho hai hàm số f(x)= x3 + x và g(x) = x2 + 1 (x  ℝ). Hãy cho biết:

a) Hai hàm số f(x), g(x) có liên tục tại x = 2 hay không.

b) Các hàm số f(x) + g(x); f(x) – g(x); f(x).g(x); fxgxcó liên tục tại x = 2 hay không.

Lời giải:

a) Tại x = 2 có limx2fx=limx2x3+x = 23+2 = 10 = f(2). Do đó hàm số f(x) liên tục tại x = 2.

Tại x = 2 có limx2gx=limx2x2+1 = 22+1 = 5 = g(2). Do đó hàm số g(x) liên tục tại x = 2.

b) Tại x = 2 cólimx2fx+gx=limx2fx+limx2fx=10+5=15=f2+g2

Do đó hàm số f(x) + g(x) liên tục tại x = 2.

Tại x = 2 có limx2fxgx=limx2fxlimx2gx=105=5=f2g2

Do đó hàm số f(x) – g(x) liên tục tại x = 2.

Tại x = 2 có limx2fx.gx=limx2fx.limx2gx=10.5=50=f2.g2

Do đó hàm số f(x).g(x) liên tục tại x = 2.

Tại x = 2 có limx2fxgx=limx2fxlimx2gx=105=2=f2g2

Do đó hàm số fxgx liên tục tại x = 2.

Luyện tập 4 trang 76 Toán 11 Tập 1: Xét tính liên tục của hàm số f(x) = sinx + cosx trên ℝ.

Lời giải:

Hàm số sinx và cosx liên tục trên ℝ.

Do đó hàm số y = sinx + cosx liên tục trên ℝ.

Đánh giá

0

0 đánh giá