Giải Toán 11 trang 46 Tập 1 Kết nối tri thức

443

Với lời giải Toán 11 trang 46 Tập 1 chi tiết trong Bài 5: Dãy số sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 5: Dãy số

Luyện tập 4 trang 46 Toán 11 Tập 1: Xét tính bị chặn của dãy số (un), với un = 2n – 1.

Lời giải:

Ta có: un = 2n – 1 ≥ 1, ∀ n ∈ ℕ*.

Do đó, dãy số (un) bị chặn dưới.

Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:

un = 2n – 1 ≤ M với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.

Vận dụng trang 46 Toán 11 Tập 1: Anh Thanh vừa được tuyển dụng vào một công ty công nghệ, được cam kết lương năm đầu sẽ là 200 triệu đồng và lương mỗi năm tiếp theo sẽ được tăng thêm 25 triệu đồng. Gọi sn (triệu đồng) là lương vào năm thứ n mà anh Thanh làm việc cho công ty đó. Khi đó ta có:

s1 = 200, sn = sn – 1 ­+ 25 với n ≥ 2.

a) Tính lương của anh Thanh vào năm thứ 5 làm việc cho công ty.

b) Chứng minh (sn) là dãy số tăng. Giải thích ý nghĩa thực tế của kết quả này.

Lời giải:

a) Ta có: s2 = s+ 25 = 200 + 25 = 225

s3 = s2 + 25 = 225 + 25 = 250

s4 = s3 + 25 = 250 + 25 = 275

s5 = s4 + 25 = 275 + 25 = 300

Vậy lương của anh Thanh vào năm thứ 5 làm việc cho công ty là 300 triệu đồng.

b) Ta có: sn = sn – 1 + 25 ⇔ s– sn – 1 = 25 > 0 với mọi n ≥ 2, n ∈ ℕ*.

Tức là sn > sn – 1 với mọi n ≥ 2, n ∈ ℕ*.

Vậy (sn) là dãy số tăng. Điều này có nghĩa là mức lương hàng năm của anh Thanh tăng dần theo thời gian làm việc.

Bài tập

Bài 2.1 trang 46 Toán 11 Tập 1: Viết năm số hạng đầu và số hạng thứ 100 của các dãy số (un) có số hạng tổng quát cho bởi:

a) un = 3n – 2;

b) un = 3 . 2n;

c) un=1+1nn .

Lời giải:

a) Ta có: u1 = 3 . 1 – 2 = 1;

u2 = 3 . 2 – 2 = 4;

u3 = 3 . 3 – 2 = 7;

u4 = 3 . 4 – 2 = 10;

u5 = 3 . 5 – 2 = 13;

u100 = 3 . 100 – 2 = 298.

b) Ta có: u1 = 3 . 21 = 6;

u2 = 3 . 22 = 12;

u3 = 3 . 23 = 24;

u4 = 3 . 24 = 48;

u5 = 3 . 25 = 96;

u100 = 3 . 2100.

c) Ta có: u1=1+111=2 ;

u2=1+122=94;

u3=1+133=6427;

u4=1+144=625256;

u5=1+155=77763125;

u100=1+1100100=101100100.

Bài 2.2 trang 46 Toán 11 Tập 1: Dãy số (un) được cho bởi hệ thức truy hồi: u1 = 1, un = n . un – 1 với n ≥ 2.

a) Viết năm số hạng đầu của dãy số.

b) Dự đoán công thức số hạng tổng quát của un.

Lời giải:

a) Năm số hạng đầu của dãy số là

u1 = 1;

u2 = 2u1 = 2 . 1 = 2;

u3 = 3u2 = 3 . 2 = 6;

u4 = 4u3 = 4 . 6 = 24;

u5 = 5u4 = 5 . 24 = 120.

b) Nhận xét thấy u1 = 1 = 1!;

u2 = 2 . 1 = 2!;

u3 = 3u2 = 3 . 2 . 1 = 3!;

u4 = 4u3 = 4 . 3 . 2 . 1 = 4!;

u5 = 5u4 = 5 . 4 . 3 . 2 . 1 = 5!;

...

Cứ tiếp tục làm như thế, ta dự đoán được công thức số hạng tổng quát của un là un = n!.

Bài 2.3 trang 46 Toán 11 Tập 1: Xét tính tăng, giảm của dãy số (un), biết:

a) un = 2n – 1;

b) un = – 3n + 2;

c) un=1n12n .

Lời giải:

a) Ta có: un + 1 = 2(n + 1) – 1 = 2n + 2 – 1 = 2n + 1

Xét hiệu un + 1 – un = (2n + 1) – (2n – 1) = 2 > 0, tức là un + 1 > un , ∀ n ∈ ℕ*.

Vậy (un) là dãy số tăng.

b) Ta có: un + 1 = – 3(n + 1) + 2 = – 3n – 3 + 2 = – 3n – 1

Xét hiệu un + 1 – un = (– 3n – 1) – (– 3n + 2) = – 3 < 0, tức là un + 1 < u, ∀ n ∈ ℕ*.

Vậy (un) là dãy số giảm.

c) un=1n12n

Nhận xét thấy: u1=11121=12>0 ; u2=12122=14<0 ;

u3=13123=18>0u4=14124=116<0 ; ...

Vậy dãy số (un) không tăng, cũng không giảm.

Bài 2.4 trang 46 Toán 11 Tập 1: Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?

a) un = n – 1;

b) un=n+1n+2 ;

c) un = sin n;

d) un = (– 1)n – 1 n2.

Lời giải:

a) Ta có: un = n – 1 ≥ 0 với mọi n ∈ ℕ*.

Do đó, dãy số (un) bị chặn dưới với mọi n ∈ ℕ*.

Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:

un = n – 1 ≤ M với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.

b) Ta có: un=n+1n+2=n+21n+2=11n+2 , với mọi n ∈ ℕ*.

Vì 0<1n+213 , ∀ n ∈ ℕ* nên 131n+2<0 ∀ n ∈ ℕ*.

Suy ra 11311n+2<1 hay 23un<1 ∀ n ∈ ℕ*.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n ∈ ℕ*.

Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

d) un = (– 1)n – 1 n2

Ta có: (– 1)n – 1 = 1 với mọi n ∈ ℕ* và n lẻ.

(– 1)n – 1 = – 1 với mọi n ∈ ℕ* và n chẵn.

n2 ≥ 0 với mọi n ∈ ℕ*.

Do đó, – 1 . n2 ≤ (– 1)n – 1 n2 ≤ 1 . n2 hay – n2 ≤ un ≤ n2 với mọi n ∈ ℕ*.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

Bài 2.5 trang 46 Toán 11 Tập 1: Viết số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó:

a) Đều chia hết cho 3;

b) Khi chia cho 4 dư 1.

Lời giải:

a) Các số nguyên dương chia hết cho 3 là: 3; 6; 9; 12; ...

Các số này có dạng 3n với n với n ∈ ℕ*.

Vậy số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó đều chia hết cho 3 là un = 3n với n ∈ ℕ*.

b) Các số nguyên dương chia cho 4 dư 1 có dạng là 4n + 1 với n ∈ ℕ*.

Vậy số hạng tổng quát của dãy số tăng gồm tất cả các số nguyên dương mà mỗi số hạng của nó khi chia cho 4 dưa là un = 4n + 1 với n ∈ ℕ*.

Bài 2.6 trang 46 Toán 11 Tập 1: Ông An gửi tiết kiệm 100 triệu đồng kì hạn 1 tháng với lãi suất 6% một năm theo hình thức tính lãi kép. Số tiền (triệu đồng) của ông An thu được sau n tháng được cho bởi công thức

An=1001+0,0612n.

a) Tìm số tiền ông An nhận được sau tháng thứ nhất, sau tháng thứ hai.

b) Tìm số tiền ông An nhận được sau 1 năm.

Lời giải:

a) Số tiền ông An nhận được sau tháng thứ nhất là

A1=1001+0,06121=100,5 (triệu đồng).

Số tiền ông An nhận được sau tháng thứ hai là

A2=1001+0,06122=101,0025 (triệu đồng).

b) Số tiền ông An nhận được sau 1 năm (12 tháng) là

A12=1001+0,061212106,17 (triệu đồng).

Đánh giá

0

0 đánh giá