Với lời giải Toán 11 trang 21 Tập 1 chi tiết trong Bài 2: Công thức lượng giác sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 Bài 2: Công thức lượng giác
Lời giải:
Ta có:
+) sin 15° = sin(45° – 30°) = sin 45° cos 30° – cos 45° sin 30°
= .
+) cos 15° = cos(45° – 30°) = cos 45° cos 30° + sin 45° sin 30°
= .
+) tan 15° = tan(45° – 30°) = = .
+) cot 15° = .
Bài 1.8 trang 21 Toán 11 Tập 1: Tính
a) , biết và ;
b) , biết và .
Lời giải:
a) Vì nên cos a < 0.
Mặt khác, từ sin2 a + cos2 a = 1 suy ra
cos a = .
Ta có:
.
b) Vì nên sin a < 0, do đó .
Mặt khác từ
Suy ra .
Ta có: .
Bài 1.9 trang 21 Toán 11 Tập 1: Tính sin 2a, cos 2a, tan 2a, biết:
a) và ;
b) sin a + cos a = và .
Lời giải:
a) Vì nên cos a < 0.
Mặt khác, từ sin2 a + cos2 a = 1 suy ra
cos a = .
Ta có: sin 2a = 2sin a cos a = .
.
.
b) Ta có: (sin a + cos a)2 =
.
Vì nên , do đó cos 2a < 0. Mặt khác từ sin2 (2a) + cos2 (2a) = 1
Suy ra .
Do đó, .
Bài 1.10 trang 21 Toán 11 Tập 1: Tính giá trị của các biểu thức sau:
a) ;
b) .
Lời giải:
a) Ta có:
.
b) Ta có:
.
Bài 1.11 trang 21 Toán 11 Tập 1: Chứng minh đẳng thức sau:
sin(a + b) sin(a – b) = sin2 a – sin2 b = cos2 b – cos2 a.
Lời giải:
Ta có: sin(a + b) sin(a – b) = [cos(a + b – a + b) – cos(a + b + a – b)]
= [cos 2b – cos 2a] = [(2cos2 b – 1) – (2cos2 a – 1)] = cos2 b – cos2 a.
Vậy sin(a + b) sin(a – b) = cos2 b – cos2 a (1).
Lại có, cos 2b – cos 2a = (1 – 2sin2 b) – (1 – 2sin2 a) = 2(sin2 a – sin2 b)
Do đó, [cos 2b – cos 2a] = . 2(sin2 a – sin2 b) = sin2 a – sin2 b.
Vậy sin(a + b) sin(a – b) = sin2 a – sin2 b (2).
Từ (1) và (2), suy ra sin(a + b) sin(a – b) = sin2 a – sin2 b = cos2 b – cos2 a (đpcm).
Bài 1.12 trang 21 Toán 11 Tập 1: Cho tam giác ABC có ; và a = BC = 12 cm.
a) Sử dụng công thức và định lí sin, hãy chứng minh diện tích của tam giác ABC cho bởi công thức
.
b) Sử dụng kết quả ở câu a và công thức biến đổi tích thành tổng, hãy tính diện tích S của tam giác ABC.
Lời giải:
a) Định lí sin trong tam giác ABC với BC = a, AC = b và AB = c là:
Từ đó suy ra .
Diện tích tam giác ABC là .
Vậy (đpcm).
b) Ta có: (định lí tổng ba góc trong tam giác ABC).
.
Ta có:
.
Vậy diện tích của tam giác ABC là (đvdt).
Xét hai dao động điều hòa có phương trình:
(cm),
(cm).
Tìm dao động tổng hợp x(t) = x1(t) + x2(t) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.
Lời giải:
Dao động tổng hợp x(t) = x1(t) + x2(t)
Suy ra x(t) = (cm).
Ta có:
.
Vậy dạo động tổng hợp có phương trình là với biên độ và pha ban đầu là .
Video bài giảng Toán 11 Bài 2: Công thức lượng giác - Kết nối tri thức
Xem thêm các lời giải bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
HĐ1 trang 17 Toán 11 Tập 1: Nhận biết công thức cộng...
Luyện tập 1 trang 18 Toán 11 Tập 1: Chứng minh rằng:...
Vận dụng 1 trang 18 Toán 11 Tập 1: Giải bài toán trong tình huống mở đầu...
HĐ2 trang 18 Toán 11 Tập 1: Xây dựng công thức nhân đôi...
Luyện tập 2 trang 19 Toán 11 Tập 1: Không dùng máy tính, tính ...
HĐ3 trang 19 Toán 11 Tập 1: Xây dựng công thức biến đổi tích thành tổng...
Luyện tập 3 trang 19 Toán 11 Tập 1: Không dùng máy tính, tính giá trị của các biểu thức:..
HĐ4 trang 20 Toán 11 Tập 1: Xây dựng công thức biến đổi tổng thành tích...
Luyện tập 4 trang 20 Toán 11 Tập 1: Không dùng máy tính, tính giá trị của biểu thức...
Bài 1.8 trang 21 Toán 11 Tập 1: Tính:...
Bài 1.9 trang 21 Toán 11 Tập 1: Tính sin 2a, cos 2a, tan 2a, biết:...
Bài 1.10 trang 21 Toán 11 Tập 1: Tính giá trị của các biểu thức sau:...
Bài 1.11 trang 21 Toán 11 Tập 1: Chứng minh đẳng thức sau:...
Bài 1.12 trang 21 Toán 11 Tập 1: Cho tam giác ABC có ; và a = BC = 12 cm...
Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 1: Giá trị lượng giác của góc lượng giác
Bài 4: Phương trình lượng giác cơ bản