Giải Toán 11 trang 21 Tập 1 Kết nối tri thức

244

Với lời giải Toán 11 trang 21 Tập 1 chi tiết trong Bài 2: Công thức lượng giác sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 2: Công thức lượng giác

Bài 1.7 trang 21 Toán 11 Tập 1Sử dụng 15° = 45° – 30°, hãy tính các giá trị lượng giác của góc 15°.

Lời giải:

Ta có:

+) sin 15° = sin(45° – 30°) = sin 45° cos 30° – cos 45° sin 30°

22.3222.12=624.

+) cos 15° = cos(45° – 30°) = cos 45° cos 30° + sin 45° sin 30°

22.32+22.12=6+24.

+) tan 15° = tan(45° – 30°) = tan45°tan30°1+tan45°.tan30° = 1331+1.33=23.

+) cot 15° = 1tan15°=123=2+3.

Bài 1.8 trang 21 Toán 11 Tập 1Tính

a) cosa+π6, biết sina=13 và π2<a<π;

b) tanaπ4, biết cosa=13 và π<a<3π2.

Lời giải:

a) Vì π2<a<π nên cos a < 0.

Mặt khác, từ sin2 a + cosa = 1 suy ra

cos a = 1sin2a=1132=63.

Ta có: cosa+π6=cosacosπ6sinasinπ6

=63.3213.12=6123=3+326.

b) Vì π<a<3π2 nên sin a < 0, do đó tana=sinacosa>0.

Mặt khác từ 1+tan2a=1cos2a

Suy ra tana=1cos2a1=11321=22.

Ta có: tanaπ4=tanatanπ41+tanatanπ4=2211+22.1=9427.

Bài 1.9 trang 21 Toán 11 Tập 1Tính sin 2a, cos 2a, tan 2a, biết:

a) sina=13 và π2<a<π;

b) sin a + cos a = 12 và π2<a<3π4.

Lời giải:

a) Vì π2<a<π nên cos a < 0.

Mặt khác, từ sin2 a + cosa = 1 suy ra

cos a = 1sin2a=1132=223.

Ta có: sin 2a = 2sin a cos a = 2.13.223=429.

cos2a=12sin2a=12.132=79.

tan2a=sin2acos2a=42979=427.  

b) Ta có: (sin a + cos a)2 = 122sin2a+cos2a+2sinacosa=14

1+sin2a=14sin2a=34.

Vì π2<a<3π4 nên π<2a<3π2, do đó cos 2a < 0. Mặt khác từ sin(2a) + cos2 (2a) = 1

Suy ra cos2a=1sin22a=1342=74.

Do đó, tan2a=sin2acos2a=3474=37=377.

Bài 1.10 trang 21 Toán 11 Tập 1Tính giá trị của các biểu thức sau:

a) A=sinπ15cosπ10+sinπ10cosπ15cos2π15cosπ5sin2π15sinπ5;

b) B=sinπ32cosπ32cosπ16cosπ8.

Lời giải:

a) Ta có:

A=sinπ15cosπ10+sinπ10cosπ15cos2π15cosπ5sin2π15sinπ5=sinπ15cosπ10+cosπ15sinπ10cos2π15cosπ5sin2π15sinπ5

=sinπ15+π10cos2π15+π5=sinπ6cosπ3=1212=1.

b) Ta có:

B=sinπ32cosπ32cosπ16cosπ8=12.2sinπ32cosπ32cosπ16cosπ8

=12sin2.π32cosπ16cosπ8=12sinπ16cosπ16cosπ8

=14.2sinπ16cosπ16cosπ8=14sinπ8cosπ8=18.2sinπ8cosπ8

=18sinπ4=18.22=216.

Bài 1.11 trang 21 Toán 11 Tập 1Chứng minh đẳng thức sau:

sin(a + b) sin(a – b) = sin2 a – sin2 b = cos2 b – cos2 a.

Lời giải:

Ta có: sin(a + b) sin(a – b) = 12[cos(a + b – a + b) – cos(a + b + a – b)]

12[cos 2b – cos 2a] = 12[(2cos2 b – 1) – (2cos2 a – 1)] = cos2 b – cos2 a.

Vậy sin(a + b) sin(a – b) = cos2 b – cos2 a (1).

Lại có, cos 2b – cos 2a = (1 – 2sin2 b) – (1 – 2sin2 a) = 2(sin2 a – sin2 b)

Do đó, 12[cos 2b – cos 2a] = 12. 2(sin2 a – sin2 b) = sin2 a – sin2 b.

Vậy sin(a + b) sin(a – b) = sin2 a – sin2 b (2).

Từ (1) và (2), suy ra sin(a + b) sin(a – b) = sin2 a – sin2 b = cos2 b – cos2 a (đpcm).

Bài 1.12 trang 21 Toán 11 Tập 1: Cho tam giác ABC có B^=75°C^=45° và a = BC = 12 cm.

a) Sử dụng công thức S=12absinC và định lí sin, hãy chứng minh diện tích của tam giác ABC cho bởi công thức

S=a2sinBsinC2sinA.

b) Sử dụng kết quả ở câu a và công thức biến đổi tích thành tổng, hãy tính diện tích S của tam giác ABC.

Lời giải:

a) Định lí sin trong tam giác ABC với BC = a, AC = b và AB = c là: asinA=bsinB=csinC

Từ đó suy ra b=asinBsinA.

Diện tích tam giác ABC là S=12absinC=12a.asinBsinA.sinC=a2sinBsinC2sinA.

Vậy S=a2sinBsinC2sinA (đpcm).

b) Ta có: A^+B^+C^=180° (định lí tổng ba góc trong tam giác ABC).

A^=180°B^+C^=180°75°+45°=60°.

Ta có: S=a2sinBsinC2sinA=122sin75°sin45°2sin60°

=144.12cos75°45°cos75°+45°2.32

=72cos30°cos120°3=7232123=36+123.

Vậy diện tích của tam giác ABC là S=36+123 (đvdt).

Bài 1.13 trang 21 Toán 11 Tập 1Trong Vật lí, phương trình tổng quát của một vật dao động điều hòa cho bởi công thức x(t) = Acos(ωt + φ), trong đó t là thời điểm (tính bằng giây), x(t) là li độ của vật tại thời điểm t, A là biên độ dao động (A > 0) và φ ∈ [–π; π] là pha ban đầu của dao động.

Xét hai dao động điều hòa có phương trình:

x1t=2cosπ3t+π6  (cm),

x2t=2cosπ3tπ3  (cm).

Tìm dao động tổng hợp x(t) = x1(t) + x2(t) và sử dụng công thức biến đổi tổng thành tích để tìm biên độ và pha ban đầu của dao động tổng hợp này.

Lời giải:

Dao động tổng hợp x(t) = x1(t) + x2(t)

Suy ra x(t) = 2cosπ3t+π6+2cosπ3tπ3 (cm).

Ta có: 2cosπ3t+π6+2cosπ3tπ3

=2cosπ3t+π6+cosπ3tπ3

=2.2cosπ3t+π6+π3tπ32cosπ3t+π6π3tπ32

=4cosπ6tπ12cosπ4=4cosπ6tπ12.22=22cosπ6tπ12.

Vậy dạo động tổng hợp có phương trình là xt=22cosπ6tπ12 với biên độ A=22 và pha ban đầu là φ=π12.

Đánh giá

0

0 đánh giá