Cho hình bình hành ABCD có O là giao điểm của hai đường chéo

506

Với giải Bài 17 trang 74 SBT Toán lớp 8 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 3 trang 72 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài tập cuối chương 3 trang 72

Bài 17 trang 74 SBT Toán 8 Tập 1: Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Lấy các điểm M, N, P, Q lần lượt là trung điểm của AO, BO, CO, DO.

a) Chứng minh tứ giác MNPQ là hình bình hành.

b) Chứng minh tứ giác ANCQ là hình bình hành.

Lời giải:

Cho hình bình hành ABCD có O là giao điểm của hai đường chéo

a) Xét ∆AOB có M, N lần lượt là trung điểm của AO, BO.

Theo bài 4, trang 63, SBT Toán 8 Tập Một, ta có: MN // AB; MN=12AB. (1)

Tương tự, xét ∆OCD ta cũng có PQ // CD; QP=12DC. (2)

Mà AB // CD; AB = CD (do ABCD là hình bình hành). (3)

Từ (1), (2) và (3) suy ra MN // PQ, MN = PQ.

Vậy tứ giác MNPQ là hình bình hành.

b) Xét ∆ANB và ∆CQD có:

AB = CD (ABCD là hình bình hành);

ABN^=CDQ^ (hai góc so le trong do AB // CD);

BN=DQ=14BD (vì OB = OD, NO = NB, QO = QD)

Do đó ∆ANB= ∆CQD (c.g.c). Suy ra AN = CQ. (4)

Xét ∆AQD và ∆CNB có:

AD = BC (do ABCD là hình bình hành);

ADQ^=CBN^ (hai góc so le trong do AD // BC);

DQ=BN=14BD.

Do đó ∆AQD=∆CNB (c.g.c). Suy ra AQ = CN. (5)

Từ (4) và (5) suy ra ANCQ là hình bình hành.

Đánh giá

0

0 đánh giá