Với giải Bài 5 trang 56 VTH Toán lớp 8 Kết nối tri thức chi tiết trong Luyện tập chung trang 54 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:
Giải VTH Toán 8 Luyện tập chung trang 54
Bài 5 trang 56 vở thực hành Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi H, K lần lượt là các chân đường cao kẻ từ đỉnh A, C xuống BD (H.3.28).
Chứng minh rằng:
a) ∆ADH = ∆CBK.
b) Tứ giác AHCK là hình bình hành.
c) AC đi qua trung điểm O của HK.
Lời giải:
a) Tứ giác ABCD là hình bình hành nên AD = BC, AD // BC (hai góc so le trong).
Xét ∆ADH và ∆CBK có AD = CB,
⇒ ∆ADH = ∆CBK (g.c.g).
b) Từ giả thiết ta có: AH ⊥ BD, CK ⊥ BD ⇒ AH // CK (1).
∆ADH = ∆CBK ⇒ AH = CK (hai cạnh tương ứng bằng nhau). (2)
Từ (1) và (2) ta có tứ giác AHCK có hai cạnh đối song song và bằng nhau nên là hình bình hành.
c) Vì AHCK là hình bình hành nên có hai đường chéo cắt nhau tại trung điểm mỗi đường, do đó AC đi qua trung điểm O của HK.
Xem thêm lời giải bài tập Vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Bài 3 trang 55 vở thực hành Toán 8 Tập 1: Cho hình bình hành ABCD có AB = 3 cm, AD = 5 cm.
Xem thêm các bài giải Vở thực hành Toán lớp 8 Kết nối tri thức hay, chi tiết khác: