Tailieumoi.vn xin giới thiệu Bài tập Toán 8 Chương 3 Bài 6: Giải bài toán bằng cách lập phương trình.
Bài viết gồm 50 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 8. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Chương 3 Bài 6: Giải bài toán bằng cách lập phương trình . Mời các bạn đón xem:
Bài tập Toán 8 Chương 3 Bài 6: Giải bài toán bằng cách lập phương trình
A. Bài tập Giải bài toán bằng cách lập phương trình
I. Bài tập trắc nghiệm
Bài 1: Mẹ hơn con 24 tuổi. Sau 2 năm nữa thì tuổi mẹ gấp 3 lần tuổi con. Tuổi của con hiện nay là:
A. 5.
B. 10.
C. 15.
D. 20.
Gọi số tuổi của con hiện tại là x (Tuổi) (x ∈ N)
→ số tuổi của mẹ là x + 24 (Tuổi)
Theo bài ra ta có: 3(x + 2) = x + 24 + 2
⇔ 3x + 6 = x + 26
⇔ 2x - 20 = 0
⇔ x = 10
Vậy hiện tại tuổi của con là 10 tuổi.
Chọn đáp án B.
Bài 2: Tìm hai số tự nhiên chẵn liên tiếp biết biết tích của chúng là 24 là:
A. 2;4
B. 4;6
C. 6;8
D. 8;10
Gọi 2 số chẵn liên tiếp cần tìm là x; x + 2 (x chia hết 2; x ∈ N)
Theo bài ra ta có: x(x + 2) = 24 ⇔ x2 + 2x - 24 = 0
⇔ (x - 4)(x + 6) = 0 ⇔ x = 4 (Do x + 6 > 0 ∀ x ∈ N)
Vậy hai số cần tìm là 4; 6.
Bài 3: Một hình chữ nhật có chiều dài hơn chiều rộng 3cm. Chu vi hình chữ nhật là 100cm. Chiều rộng hình chữ nhật là:
A. 23,5cm
B. 47cm
C. 100cm
D. 3cm
Gọi chiều rộng hình chữ nhật là x(cm) (x > 0)
→ Chiều dài hình chữ nhật là x + 3(cm)
Do chu vi hình chữ nhật là 100cm nên ta có:
2[ x + (x + 3) ] = 100 ⇔ 2x + 3 = 50 ⇔ x = 23,5
Vậy chiều rộng hình chữ nhật là 23,5cm
Chọn đáp án A.
Bài 4: Một xe đạp khởi hành từ điểm A, chạy với vận tốc 15 km/h. Sau đó 6 giờ, một xe hơi đuổi theo với vận tốc 60 km/h. Hỏi xe hơi chạy trong bao lâu thì đuổi kịp xe đạp?
A. 1h
B. 2h
C. 3h
D. 4h
Gọi t ( h ) là thời gian từ lúc xe hơi chạy đến lúc đuổi kịp xe đạp; t > 0.
⇒ t + 6 ( h ) là thời gian kể từ lúc xe đạp đi đến lúc xe hơi đuổi kịp.
+ Quãng đường xe đạp đi được là s1 = 15( t + 6 ) km.
+ Quãng đường xe hơi đi được là s2 = 60t km.
Vì hai xe xuất phát tại điểm A nên khi gặp nhau s1 = s2.
Khi đó ta có: 15(t + 6) = 60t ⇔ 60t - 15t = 90 ⇔ t = 2(h) (thỏa mãn)
Vậy xe hơi chạy được 2 giờ thì đuổi kịp xe đạp.
Chọn đáp án B.
Bài 5: Một người đi từ A đến B. Trong nửa quãng đường đầu người đó đi với vận tốc 20km/h phần đường còn lại đi với tốc độ 30km/h. Vận tốc trung bình của người đó khi đi từ A đến B là:
A. 20km/h
B. 24km/h
C. 25km/h
D. 30km/h
Gọi vận tốc trung bình của người đó là: x(km/h)
Gọi độ dài nửa quãng đường AB là: a(km)
Khi đó ta có:
+ Thời gian đi nửa quãng đường đầu là: (h)
+ Thời gian đi nửa quãng đường sau là: (h)
→ Thời gian đi cả quãng đường AB là:
Do đó ta có:
Vậy vận tốc cần tìm là 24km/h
Chọn đáp án B.
Bài 6: Một người đi xe đạp từ A đến B cách nhau 24km. Khi đi từ B trở về A người đó tăng vận tốc thêm 4km/h so với lúc đi, nên thời gian về ít hơn thời gian đi là 30 phút. Tính vận tốc của xe đạp khi đi từ A đến B.
A. 12km /h
B. 15km/h
C. 20km/h
D.16km/h
Đổi 30 phút = giờ.
Gọi vận tốc của xe đạp khi đi từ A đến B là x (km/h, x > 0). Thời gian xe đi từ A đến B là (giờ).
Đi từ B về A, người đó đi với vận tốc x + 4 (km/h). Thời gian xe đi từ B về A là (giờ)
Do thời gian về ít hơn thời gian đi là 30 phút nên ta có phương trình:
Giải phương trình:
Đối chiếu với điều kiện ta có vận tốc của xe đạp đi từ A đến B là 12km/h.
Chọn đáp án A
Bài 7: Một công nhân theo kế hoạch phải làm 85 sản phẩm trong một khoảng thời gian dự định. Nhưng do yêu cầu đột xuất, người công nhân đó phải làm 96 sản phẩm. Do người công nhân mỗi giờ đã làm tăng thêm 3 sản phẩm nên người đó đã hoàn thành công việc sớm hơn so với thời gian dự định là 20 phút. Tính xem theo dự định mỗi giờ người đó phải làm bao nhiêu sản phẩm, biết rằng mỗi giờ chỉ làm được không quá 20 sản phẩm.
A. 10
B. 12
C. 15
D. 18
Gọi số sản phẩm công nhân dự định làm trong một giờ là x (0 < x ≤ 20).
Thời gian dự kiến người đó làm xong 85 sản phẩm là (giờ)
Thực tế mỗi giờ làm tăng thêm 3 sản phẩm nên số sản phẩm làm được mỗi giờ là x + 3.
Do đó 96 sản phẩm được làm trong (giờ)
Thời gian hoàn thành công việc thực tế sớm hơn so với dự định là 20 phút = giờ nên ta có phương trình
Vậy theo dự định mỗi giờ người đó phải làm 15 sản phẩm.
Chọn đáp án C
Bài 8: Một mảnh đất hình chữ nhật có độ dài đường chéo là 13m và chiều dài lớn hơn chiều rộng là 7m. Tính chiều dài của mảnh đất đó.
A. 5m
B. 8m
C. 12m
D. 10m
Gọi chiều rộng của mảnh đất hình chữ nhật là x (m) (0 < x < 13)
Chiều dài mảnh đất hình chữ nhật lớn hơn chiều rộng 7m nên chiều dài của mảnh đất hình chữ nhật là x + 7 (m)
Biết độ dài đường chéo là 13m nên theo định lý Pitago ta có phương trình:
Vậy chiều rộng mảnh đất hình chữ nhật là 5m và chiều dài mảnh đất đó là 12m.
Chọn đáp án C
Bài 9: Một ô tô tải đi từ A đến B với vận tốc 45km/h. Sau 1 giờ 30 phút thì một xe con cũng xuất phát đi từ A đến B với vận tốc 60km/h và đến B cùng lúc với xe tải. Tính quãng đường AB.
A. 270 km
B. 200km
C. 240 km
D. 300km
Gọi độ dài quãng đường AB là x (đơn vị km, x > 0)
Thời gian ô tô tải đi từ A đến B là (giờ)
Thời gian xe con đi từ A đến B là (giờ)
Vì xe con xuất phát sau xe tải 1 giờ 30 phút = giờ nên ta có phương trình:
(thỏa mãn điều kiện)
Vậy độ dài quãng đường AB là 270km.
Chọn đáp án A
Bài 10: Hai bến sông A và B cách nhau 40km. Cùng một lúc với ca nô xuôi từ bến A có một chiếc bè trôi từ bến A với vận tốc 3km/h. Sau khi đến bến B, ca nô quay trở về bến A ngay và gặp bè, khi đó bè đã trôi được 8km. Tính vận tốc riêng của ca nô.
A. 20km/h
B. 25km/h
C. 27 km /h
D. 30km/h
Gọi vận tốc ca nô là x(km/h), x > 3. Vận tốc ca nô xuôi dòng là x + 3(km/h)
Thời gian ca nô xuôi dòng từ A đến B là (giờ)
Vận tốc ca nô ngược dòng là x - 3 (km/h)
Quãng đường ca nô ngược dòng từ B đến địa điểm gặp bè là : 40 - 8 = 32 km
Thời gian ca nô ngược dòng từ B đến địa điểm gặp bè là: (giờ)
Thời gian bè trôi là:
Ta có phương trình:
So sánh với điều kiện thì chỉ có nghiệm x = 27 thỏa mãn, suy ra vận tốc của ca nô là 27km/h.
Chọn đáp án C
II. Bài tập tự luận có lời giải
Bài 1: Một xưởng dệt theo kế hoạch mỗi ngày phải dệt 30 áo. Trong thực tế mỗi ngày xưởng dệt được 40 áo nên đã hoàn thành trước thời hạn 3 ngày, ngoài ra còn làm thêm đươc 20 chiếc áo nữa. Hãy chọn câu đúng. Nếu gọi thời gian xưởng làm theo kế hoạch là x (ngày, x > 30). Thì phương trình của bài toán là?
Lời giải
Gọi thời gian xưởng làm theo kế hoạch là x (ngày, x > 30)
Tổng số áo theo kế hoạch là 30x (áo)
Vì đội hoàn thành trước thời hạn 3 ngày nên thời gian làm theo thực tế là x – 3 ngày
Vì theo thực tế đội làm thêm được 20 sản phẩm nên ta có phương trình
40(x – 3) = 30x + 20 ⇔ 40(x – 3) – 20 = 30x.
Bài 2 Một xưởng dệt theo kế hoạch mỗi ngày phải dệt 30 áo. Trong thực tế mỗi ngày xưởng dệt được 40 áo nên đã hoàn thành trước thời hạn 3 ngày, ngoài ra còn làm thêm đươc 20 chiếc áo nữa. Hãy chọn câu đúng. Nếu số sản phẩm xưởng cần làm theo kế hoạch là x (sản phẩm, x > 0, x Є N) thì phương trình của bài toán là?
Lời giải
Gọi số sản phẩm xưởng cần làm theo kế hoạch là x (sản phẩm, x > 0, x Є N).
Thời gian dự kiến xong là: (ngày)
Vì theo thực tế đội làm được thêm 20 sản phẩm nên số sản phẩm thực tế làm được là: x + 20 (sản phẩm)
Thời gian thực tế là: (ngày)
Vì đội hoàn thành trước thời hạn 3 ngày nên ta có phương trình
Bài 3 Một người đi xe máy từ A đến B với vận tốc 25 km/h. Lúc về người đó đi với vận tốc 30 km/h nên thời gian về ít hơn thời gian đi là 20 phút. Tính quãng đường AB?
Lời giải
Gọi quãng đường AB dài x ( x > 0, km)
Vì thời gian về ít hơn thời gian đi là 20 phút (= h) nên ta có phương trình
Vậy quãng đường AB dài 50km
Bài 4 Một người đi xe máy từ A đến B, với vận tốc 30km/h. Lúc về người đó đi với vận tốc 24 km/h. Do đó thời gian về lâu hơn thời gian đi là 30 phút. Thời gian lúc đi là?
Lời giải
Đổi 30 phút = (h).
Gọi thời gian lúc đi là x (giờ), quãng đường AB dài là: 30x (km)
Thời gian người đó đi quãng đường AB lúc về là: (h)
Bài 5 Một ca nô xuôi dòng từ A đến B hết 1h20 phút và ngược dòng hết 2h. Biết vận tốc dòng nước là 3km/h. Tính vận tốc riêng của ca nô?
Lời giải
Gọi vận tốc riêng của ca nô là x (x > 3) km/h
Vận tốc khi xuôi dòng là x + 3 (km/h)
Vận tốc khi ngược dòng là x – 3 (km/h)
Đổi 1 giờ 20 phút = giờ. Vì ca nô xuôi dòng và ngược dòng trên khúc sông AB nên ta có phương trình
Vậy vận tốc riêng của ca nô là 15 (km/h)
Bài 6 Một ca nô xuôi dòng từ A đến B hết 1h24 phút và ngược dòng hết 2h. Biết vận tốc dòng nước là 3km/h. Tính vận tốc riêng của ca nô?
Lời giải
Gọi vận tốc riêng của ca nô là x (x > 3) km/h
Vận tốc khi xuôi dòng là x + 3 (km/h)
Vận tốc khi ngược dòng là x – 3 (km/h)
Đổi 1 giờ 20 phút = giờ. Vì ca nô xuôi dòng và ngược dòng trên khúc sông AB nên ta có phương trình
Vậy vận tốc riêng của ca nô là 17 (km/h)
Bài 7 Một hình chữ nhật có chu vi 372 m nếu tăng chiều dài 21m và tăng chiều rộng 10m thì diện tích tăng 2862m2. Chiều dài của hình chữ nhật là:
Lời giải
Nửa chu vi của hình chữ nhật là: 372 : 2 = 186 (m)
Gọi chiều dài hình chữ nhật là x(m), (0 < x < 186)
⇒ Chiều rộng hình chữ nhật là: 186 – x (m)
Diện tích hình chữ nhật là: x(186 – x) = 186x – x2 (m2)
Tăng chiều dài lên 21m thì chiều dài mới là: x + 21 (m)
Tăng chiều rộng lên 10m thì chiều rộng là: 186 – x + 10 = 196 – x (m).
Diện tích hình chữ nhật mới là: (x +21)(196 – x) = 175x – x2 + 4116 (m2)
Theo đề bài ta có phương trình: 186x – x2 + 2862 = 175x – x2 + 4116
⇔ 11x = 1254 ⇔ x = 114 (TM)
Vậy chiều dài hình chữ nhật là 114m.
Bài 8 Một mảnh vườn hình chữ nhật có chu vi 56m. Nếu tăng chiều dài 4m và giảm chiều rộng 2m thì diện tích tăng 8m2. Chiều dài của hình chữ nhật là:
Lời giải
Nửa chu vi của hình chữ nhật là: 56 : 2 = 28 (m)
Gọi chiều dài hình chữ nhật là x(m), (0 < x < 28)
⇒ Chiều rộng hình chữ nhật là: 28 – x (m)
Diện tích hình chữ nhật là: x(28 – x) = 28x – x2 (m2)
Tăng chiều dài lên 21m thì chiều dài mới là: x + 4 (m)
Giản chiều rộng 2m thì chiều rộng mới là: 28 – x – 2 = 26 – x (m).
Diện tích hình chữ nhật mới là: (x +4)(26 – x) = 104 + 22x – x2 (m2)
Theo đề bài ta có phương trình: 28x – x2 + 8 = 104 + 22x – x2
⇔ 6x = 96 ⇔ x = 16 (TM)
Vậy chiều dài hình chữ nhật là 16m.
Bài 19: Năm nay tuổi mẹ gấp 3 lần tuổi Phương. Phương tính rằng 13 năm nữa thì tuổi mẹ chỉ còn gấp 2 lần tuổi Phương. Hỏi năm nay Phương bao nhiêu tuổi?
Lời giải
Gọi x là tuổi của Phương năm nay. Điều kiện: x nguyên dương.
Tuổi của mẹ năm nay là 3x tuổi.
13 năm nữa tuổi của Phương là: x + 13 (tuổi)
13 năm nữa tuổi của mẹ Phương là: 3x + 13 (tuổi)
13 năm nữa thì tuổi mẹ chỉ còn gấp 2 lần tuổi Phương nên ta có phương trình:
3x + 13 = 2(x + 13) ⇔ 3x + 13 = 2x + 26 ⇔ x = 13 (tm)
Vậy Phương năm nay 13 tuổi
Bài 20: Hình chữ nhật có đường chéo 10cm. Chiều rộng kém chiều dài 2cm. Diện tích hình chữ nhật là:
Lời giải
Giả sử hình chữ nhật ABCD có chiều dài AB = x (cm), (x > 2)
Chiều rộng BC là: x – 2 (cm)
Độ dài đường chéo AC = 10cm, theo định lí Pitago ta có:
x2 + (x – 2)2= 102
⇔ x2 + x2 – 4x + 4 = 100
⇔ 2x2 – 4x – 96 = 0
⇔ (x – 8)(x + 6) = 0
Do đó chiều dài hình chữ nhật là: 8(cm) và chiều rộng là 8.6 = 48 (cm2)
Bài 21: Một hợp tác xã dự kiến thu hoạch 200ha lúa trong thời gian đã định. Song thực tế mỗi ngày thu hoạch nhanh hơn so với kế hoạch là 5ha nên đã hoàn thành công việc nhanh hơn dự kiến 2 ngày. Hỏi theo dự kiến mỗi ngày thu hoạch bao nhiêu ha ? (mỗi ngày thu hoạch được số lúa là như nhau)
Lời giải
Gọi t là số ngày hợp tác xã dự kiến thu hoạch xong 200ha lúa (t > 2)
⇒theo dự kiến một ngày hợp tác xã thu hoạch được số ha lúa là (ha)
Thực tế, mỗi ngày hợp tác thu hoạch được là (ha)
Do đó số ngày hoàn thành công việc là: (ngày)
Vì công việc hoàn thành sớm hơn dự kiến 2 ngày nên ta có phương trình
Với t = -8 không thỏa mãn điều kiện (loại)
Với t = 10 thỏa mãn điều kiện (nhận)
Vậy theo dự kiến mỗi ngày hợp tác thu hoạch số ha lúa là (ha)
Bài 22: Một ô tô đi từ A đến B trong một thời gian nhất định. Nếu xe chạy với vận tốc 35km/h thì đến chậm mất 2 giờ. Nếu xe chạy với vận tốc 50km/h thì đến sớm hơn 1 giờ. Tính quãng đường AB và thời gian dự định lúc đầu
Lời giải
Gọi t là thời gian dự định lúc đầu ( t đơn vị là giờ, t > 1)
Nếu xe chạy với vận tốc 35km/h thì thời gian đi từ A đến B là: t + 2 (giờ)
quãng đường AB là: 35.(t + 2) km (1)
Nếu xe chạy với vận tốc 50km/h thì thời gian đi tử A đến B là: t - 1 (giờ)
quãng đường AB là: 50.(t - 1) km (2)
Từ (1) và (2) ta có phương trình:
(thỏa mãn điều kiện)
Vậy thời gian dự định ban đầu là 8(giờ) và quãng đường AB dài 35.(t + 2) = 35.10 = 350 (km)
Bài 23: Lúc 6 giờ một ô tô chạy từ A về B. Sau đó nửa giờ, một xe máy chạy từ B về A. Ô tô gặp xe máy lúc 8 giờ. Biết vận tốc ô tô lớn hơn vận tốc xe máy là 10km/h và khoảng cách AB = 195km. Tính vận tốc mỗi xe.
Lời giải
Gọi vận tốc ô tô là x (km/h) (x>0).
Gọi vận tốc xe máy là y (km/h) (y>0).
Vì vận tốc ô tô hơn vận tốc xe máy là 10km/h nên ta có phương trình: x – y = 10
Thời gian ô tô đã đi cho đến lúc gặp xe máy là: 8 – 6 = 2(giờ).
Thời gian xe máy đã đi cho đến lúc gặp ô tô là:
(giờ).
Quãng đường ô tô chạy trong 2 giờ là 2x(km).
Quãng đường xe máy chạy trong giờ là (km).
Vì quãng đường AB dài 195km nên ta có phương trình
.
Do đó ta có hệ hai phương trình :
Giải hệ này ta được x = 60; y = 50 (thỏa mãn điều kiện).
Vậy vận tốc ô tô là 60 km/h, vận tốc xe máy là 50 km/h.
III. Bài tập vận dụng
Bài 1: Một người đi xe máy từ A đến B mất 6 giờ. Lúc về đi từ B đến A người đó đi với vận tốc nhanh hơn 4 km/h nên chỉ mất 5 giờ. Tính quãng đường AB?
Bài 2: Lúc 7 giờ sáng một ô tô xuất phát từ tỉnh A đến tỉnh B với vận tốc 60km/h. Cũng cùng thời gian ấy một xe máy xuất phát từ tỉnh B về tỉnh A với vận tốc 50 km/h. Biết hai tỉnh A và B cách nhau 220 km . Hỏi sau bao lâu 2 xe gặp nhau và gặp nhau lúc mấy giờ?
Bài 3: Lúc 7 giờ sáng một chiếc canô xuôi dòng từ A đến B cách nhau 36km rồi ngay lập tức quay trở về A lúc 11giờ30 phút. Tính vận tốc của canô khi đi xuôi dòng. Biết rằng vận tốc của dòng nước là 6 km/h?
Bài 4: Một đội sản xuất dự định mỗi ngày làm được 48 chi tiết máy . Khi thực hiện mỗi ngày đội làm được 60 chi tiết máy. Vì vậy đội không những đã hoàn thành xong trước kế hoạch 2 ngày mà còn làm thêm được 25 chi tiết máy. Tính số chi tiết máy mà đội phải sản xuất theo kế hoạch?
Bài 5: Một hợp tác xã dự định trung bình mỗi tuần đánh được 20 tấn cá. Nhưng do vượt mức 6 tấn/tuần nên chẳng những hoàn thành kế hoạch sớm hơn 1 tuần mà còn vượt mức 10 tấn. Tính mức kế hoạch đã dự định?
Bài 6: Sau khi nhận kế hoạch của xí nghiệp ; một tổ sản xuất dự định mỗi ngày sản xuất 30 sản phẩm, nhưng khi thực hiện mỗi ngày tổ sản xuất dược 40 sản phẩm. Do đó đã hoàn thành kế hoạch sớm hơn 2 ngày và sản xuất thêm được 40 sản phẩm. Hỏi theo kế hoạch tổ phải sản xuất được bao nhiêu sản phẩm?
Bài 7: Một số có 2 chữ số. Biết rằng chữ số hàng chục gấp 3 lần chữ số hàng đơn vị. Nếu đổi chỗ 2 chữ số cho nhau được chữ số mới nhỏ hơn chữ số cũ 18 đơn vị . Tìm số ban đầu?
Bài 8: Một số có 2 chữ số. Biết rằng chữ số hàng đơn vị gấp 3 lần chữ số hàng chục. Nếu đổi chỗ 2 chữ số cho nhau được chữ số mới lớn hơn chữ số cũ 54 đơn vị. Tìm số ban đầu?
Bài 9: Cho một phân số có mẫu số lớn hơn tử số 11 đơn vị. Nếu tăng tử số thêm 3 đơn vị và giảm mẫu số 4 đơn vị thì giá trị phân số mới là 3/4 . Tìm phân số đã cho?
Bài 10: Hai người công nhân cùng làm chung công việc trong 12 giờ thì xong. Nhưng chỉ làm được trong 4 giờ, người kia đi làm công việc khác, người thứ hai làm tiếp trong 10 giờ nữa thì xong . Hỏi mỗi người làm một mình thì bao lâu xong công việc?
Bài 11: Hai người làm chung công việc trong 4 ngày thì xong. Nhưng chỉ làm được trong 2 ngày, người kia đi làm công việc khác, người thứ hai làm tiếp trong 6 ngày nữa thì xong. Hỏi mỗi người làm một mình thì bao lâu xong công việc?
Bài 12: Hai vòi nước cùng chảy vào cùng 1 bể thì 3 giờ 20 phút đầy bể. Người ta cho vòi 1 chảy trong 3 giờ và vòi 2 chảy trong 2 giờ thì được bể. Tính thời gian mỗi vòi chảy 1 mình chảy đầy bể?
Bài 13: Một khu vườn hình chữ nhật có chu vi là 56 m. Nếu tăng chiều rộng thêm 4 m và giảm chiều dài thêm 4m thì diện tích tăng 8m vuông. Tính chiều dài và chiều rộng khu vườn?
Bài 14: Số học sinh khá của khối 8 bằng số học học sinh giỏi. Nếu thêm số học sinh giỏi 10 bạn và số học sinh khá giảm đi 6 bạn, vì vậy số học sinh khá gấp 2 lần số học sinh giỏi. Tính số học sinh giỏi khối 8?
Bài 15: Năm nay , tuổi của anh gấp 3 lần tuổi của em . Sau 6 năm nữa tuổi của anh chỉ gấp đôi tuổi của em . Hỏi năm nay tuổi của anh và em là bao nhiêu tuổi?
Bài 16: Bài toán đố:
Một đàn em bé tắm bên sông
Ống nước làm phao nổi bềnh bồng
Hai chú một phao thừa bảy chiếc
Hai phao một chú bốn bé không
Biết ai giỏi tính xin chỉ giúp
Mấy chú? Mấy phao ở bến sông?
Bài 17: Tổng số học sinh khối 8 và khối 9 của một trường là 400 em, trong đó có 252 em là học sinh giỏi. Tính số học sinh của mỗi khối, biết rằng số học sinh giỏi khối 8 chiếm tỉ lệ 60% số học sinh khối 8, số học sinh giỏi khối 9 chiếm tỉ lệ 65% số học sinh khối 9.
B. Lý thuyết Giải bài toán bằng cách lập phương trình
1. Các kiến thức cần nhớ
Các bước giải bài toán bằng cách lập phương trình
Bước 1: Lập phương trình:
-Chọn ẩn và đặt điều kiện cho ẩn.
-Biểu diễn các đại lượng chưa biết theo ẩn và các đại lượng đã biết.
-Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình.
Bước 3: Trả lời: Chọn các nghiệm thỏa mãn điều kiện của ẩn rồi kết luận.
2. Các dạng toán thường gặp
Dạng 1: Toán về quan hệ các số
Phương pháp:
Dựa vào điều kiện của đề bài để chọn ẩn và lập phương trình liên quan đến các số.
Dạng 2: Toán chuyển động
Phương pháp
Ta thường sử dụng các công thức ;
Với là quãng đường, là vận tốc, : thời gian
Đối với bài toán chuyển động của cano hoặc tàu trên dòng nước thì
với là vận tốc cano (tàu ) khi xuôi dòng;
là vận tốc cano (tàu ) khi ngược dòng;
là vận tốc thực của cano (tàu ) (khi nước yên lặng);
là vận tốc của dòng nước.
Dạng 3: Toán làm chung công việc
Phương pháp
Một số lưu ý khi giải bài toán làm chung công việc
- Có ba đại lượng tham gia là: Toàn bộ công việc , phần công việc làm được trong một đơn vị thời gian (năng suất) và thời gian.
Công thức: Toàn bộ công việc bằng tích năng suất với thời gian.
- Nếu một đội làm xong công việc trong ngày thì một ngày đội dó làm được công việc.
- Xem toàn bộ công việc là (công việc).
Dạng 4: Toán phần trăm
Phương pháp
- Nếu gọi tổng số sản phẩm là thì số sản phẩm khi vượt mức là (sản phẩm)
- Nếu gọi tổng số sản phẩm là thì số sản phẩm khi giảm là (sản phẩm)
Dạng 5: Toán có nội dung hình học
Phương pháp
Một số công thức cần nhớ
Với tam giác:
Diện tích = (Đường cao . Cạnh đáy)
Chu vi = Tổng độ dài ba cạnh
Với tam giác vuông:
Diện tích = cạnh góc vuông . cạnh góc vuông
Với hình chữ nhật:
Diện tích = Chiều dài. Chiều rộng
Chu vi= 2.(Chiều dài + Chiều rộng)
Với hình vuông cạnh
Diện tích =
Chu vi = Cạnh .
Dạng 6: Toán về năng suất lao động
Phương pháp:
Năng suất bằng tỉ số giữa khối lượng công việc và thời gian hoàn thành