’Tailieumoi.vn xin giới thiệu Bài tập Toán 11 Chương 4 Bài 1: Giới hạn của dãy số. Bài viết gồm 50 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 11. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Chương 4 Bài 1: Giới hạn của dãy số. Mời các bạn đón xem:
Bài tập Toán 11 Chương 4 Bài 1: Giới hạn của dãy số
A. Bài tập Giới hạn của dãy số
I. Bài tập trắc nghiệm
Bài 1:
A.
B.
C. 0
D. 1
Chia cả tử thức mẫu thức cho n , ta có:
Chọn đáp án D
Bài 2: lim(-3n3+2n2-5) bằng:
A. -3
B. 0
C. -∞
D. +∞
Ta có:
Chọn đáp án C
Bài 3: Lim(2n4+5n2-7n) bằng
A. -∞
B. 0
C. 2
D. +∞
Ta có:
Chọn đáp án D
Bài 4: Dãy số nào sau đây có giới hạn là +∞?
A. un = 9n2-2n5
B. un = n4-4n5
C. un = 4n2-3n
D. un = n3-5n4
Chỉ có dãy un = 4n2-3n có giới hạn là +∞, các dãy còn lại đều có giới hạn là -∞. Đáp án C
Thật vậy, ta có:
Chọn đáp án C
Bài 5: Nếu limun = L,un+9>0 ∀n thì lim bằng số nào sau đây?
A. L+9
B. L+3
C.
D.
Vì limun = L nên lim(un + 9) = L + 9 do đó lim=
Chọn đáp án C
Bài 6:
A. 0
B. 1
C. 2
D. +∞
- Cách 1: Chia tử thức và mẫu thức cho n:
Đáp án là B
- Cách 2: Thực chất có thể coi bậc cao nhất của tử thức và mẫu thức là 1, do đó chỉ cần để ý hệ số bậc 1 của tử thức là , của mẫu thức là 2, từ đó tính được kết quả bằng 1.
Chọn đáp án B
Bài 7: limn()-) bằng:
A. +∞
B. 4
C. 2
D. -1
Chọn đáp án C
Bài 8:
A.
B.
C. 1
D.+∞
Chia cả tử và mẫu của phân thức cho , ta được:
Chọn đáp án C
Bài 9: Tổng của cấp số nhân vô hạn :
A. 1
B.
C.
D.
Chọn đáp án B
Bài 10: Cho số thập phân vô hạn tuần hoàn a = 2,151515... (chu kỳ 15), a được biểu diễn dưới dạng phân số tối giản, trong đó m, n là các số nguyên dương. Tìm tổng m + n.
A. 104
B. 312
C. 38
D . 114
Chọn đáp án A
II. Bài tập tự luận có lời giải
Bài 1: Tính lim(n3 - 2n + 1)?
Lời giải:
Bài 2: Dãy số nào sau đây có giới hạn khác 0?
Lời giải:
- Cách 1:
- Cách 2 (phương pháp loại trừ): Từ các định lí ta thấy:
Các dãy ở phương án A,B đều bằng 0, do đó loại phương án A,B
Bài 3: Dãy số nào sau đây có giới hạn bằng 0?
Lời giải:
- Cách 1: Dãy ()n có giới hạn 0 vì |q| < 1 thì limqn = 0. Đáp án là D
- Cách 2: Các dãy ở các phương án A,B,C đều có dạng lim qn nhưng |q| > 1 nên không có giới hạn 0, do đó loại phương án A,B,C. Chọn đáp án D
Bài 4: lim() có giá trị bằng:
Lời giải:
- Cách 1: Chia tử và mẫu của phân tử cho n (n là luỹ thừa bậc cao nhất của n trong tử và mẫu của phân thức), ta được :
- Cách 2: Sử dụng nhận xét:
khi tính lim un ta thường chia tử và mẫu của phân thức cho nk (nk là luỹ thừa bậc cao nhất của n trong tử và mẫu của phân thức), từ đó được kết quả:
Nếu m < p thì lim un =0. Nếu m =p thì lim un=
Nếu m > p thì lim un= +∞ nếu am.bp > 0; lim un= -∞ nếu am.bp < 0
Vì tử và mẫu của phân thức đã cho đều có bậc 1 nên kết quả
Bài 5:
Lời giải:
- Cách 1: Sử dụng nhận xét trên, vì bậc của tử thức nhỏ hơn bậc của mẫu thức nên kết quả :
Bài 6:
Lời giải:
- Cách 1: Sử dụng nhận xét trên, vì bậc của tử thức lớn hơn bậc của mẫu thức, hệ số luỹ thừa bậc cao nhất của n cả tử và mẫu là số dương nên kết quả :
Bài 7: Dãy số nào sau đây có giới hạn bằng ?
Lời giải:
Bài 8:
Lời giải:
Bài 9:
Lời giải:
Chia cả tử thức và mẫu thức cho
Bài 10:
Lời giải:
Trước hết tính :
III. Bài tập vận dụng
Bài 1 bằng ?
Bài 2 bằng ?
Bài 3 Số thập phân vô hạn tuần hoàn 0,32111... được biểu diễn dưới dạng phân số tối giản , trong đó a, b là các số nguyên dương. Tính a - b
Bài 4 bằng?
Bài 5 Giá trị của bằng?
Bài 6 Kết quả đúng của là?
Bài 7 Giá trị của bằng?
Bài 8 Cho dãy số un với . Chọn kết quả đúng của lim un là?
Bài 9 Tính giới hạn:
Bài 10 Giá trị của bằng?
B. Lý thuyết Giới hạn của dãy số
I. GIỚI HẠN HỮU HẠN CỦA DÃY SỐ
1. Định nghĩa
Định nghĩa 1
Ta nói dãy số (un) có giới hạn là 0 khi n dần tới dương vô cực, nếu |un| có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi.
Kí hiệu: hay un → 0 khi n → +∞.
Ví dụ 1. Cho dãy số (un) với . Tìm giới hạn dãy số
Giải
Xét
Với n > 10 n2 > 102 = 100
Định nghĩa 2
Ta nói dãy số (vn) có giới hạn là a (hay vn dần tới a) khi n → +∞ nếu
Kí hiệu: hay vn → a khi n → +∞.
Ví dụ 2. Cho dãy số . Chứng minh rằng .
Giải
Ta có
Do đó: .
2. Một vài giới hạn đặc biệt
a) với k nguyên dương;
b) nếu |q| < 1;
c) Nếu un = c (c là hằng số) thì .
Chú ý: Từ nay về sau thay cho ta viết tắt là lim un = a.
II. ĐỊNH LÝ VỀ GIỚI HẠN HỮU HẠN
Định lí 1
a) Nếu lim un = a và lim vn = b thì
lim (un + vn) = a + b
lim (un – vn) = a – b
lim (un.vn) = a.b
(nếu )
Nếu với mọi n và limun = a thì:
và
Ví dụ 3. Tính
Giải
Ví dụ 4. Tìm
Giải
III. TỔNG CỦA CẤP SỐ NHÂN LÙI VÔ HẠN
Cấp số nhân vô hạn (un) có công bội q, với |q| < 1 được gọi là cấp số nhân lùi vô hạn.
Tổng của cấp số nhân lùi vô hạn:
Ví dụ 5. Tính tổng của cấp số nhân lùi vô hạn
Giải
Ta có dãy số là một số cấp số nhân lùi vô hạn với công bội .
Khi đó ta có:
IV. GIỚI HẠN VÔ CỰC
1. Định nghĩa
- Ta nói dãy số (un) có giới hạn là +∞ khi n → +∞, nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.
Kí hiệu: lim un = +∞ hay un → +∞ khi n → +∞.
- Dãy số (un) có giới hạn là –∞ khi n → +∞, nếu lim (–un) = +∞.
Kí hiệu: lim un = –∞ hay un → –∞ khi n → +∞.
Nhận xét: un = +∞ ⇔ lim(–un) = –∞
2. Một vài giới hạn đặc biệt
Ta thừa nhận các kết quả sau
a) lim nk = +∞ với k nguyên dương;
b) lim qn = +∞ nếu q > 1.
3. Định lí 2
a) Nếu lim un = a và lim vn = ±∞ thì
b) Nếu lim un = a > 0, lim vn = 0 và vn > 0, ∀ n > 0 thì
c) Nếu lim un = +∞ và lim vn = a > 0 thì
Ví dụ 6. Tính .
Giải
Vì và