Bộ 10 đề thi Học kì 1 Toán 10 Chân trời sáng tạo có đáp án năm 2024

Mua tài liệu 115 3.8 K 35

Tailieumoi.vn xin giới thiệu bộ đề thi học kì 1 môn Toán lớp 10 sách Chân trời sáng tạo năm 2024 – 2025. Tài liệu gồm 2 đề thi có ma trận chuẩn bám sát chương trình học và đáp án chi tiết, được biên soạn bởi đội ngũ giáo viên THPT dày dặn kinh nghiệm sẽ giúp các em ôn tập kiến thức và rèn luyện kĩ năng nhằm đạt điểm cao trong bài thi học kì 1 Toán 10. Mời các bạn cùng đón xem:

Chỉ từ 150k mua trọn bộ Đề thi học kì 1 Toán 10 Chân trời sáng tạo bản word có lời giải chi tiết (chỉ từ 20k cho 1 đề thi bất kì):

B1: Gửi phí vào tài khoản 0711000255837 - NGUYEN THANH TUYEN - Ngân hàng Vietcombank

B2: Nhắn tin tới zalo Vietjack Official - nhấn vào đây

Xem thử tài liệu tại đây: Link tài liệu

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án năm 2024 - 2025 - Đề 1

Phòng Giáo dục và Đào tạo .....

Đề thi Học kì 1 - Chân trời sáng tạo

Năm học 2024 - 2025

Môn: Toán 10

Thời gian làm bài: 90 phút

(Đề số 1)

Phần I: Trắc nghiệm (6 điểm – 30 câu).

Câu 1: Trong các câu sau, có bao nhiêu câu là mệnh đề?

a) Cố lên, sắp đói rồi!

b) Số 15 là số nguyên tố.

c) Tổng các góc của một tam giác là 180.

 d) x là số nguyên dương.

     A. 3                                    B. 

C. 4                                    D. 1

Câu 2: Trong các mệnh đề dưới đây mệnh đề nào đúng?

A. xR,x2+1>0  

B. xR,x2>x                                    

C. rQ,r2=7    

D. nN,n+4 chia hết cho 4.

Câu 3: Cho A={a;b;c}  B={a;c;d;e}. Hãy chọn khẳng định đúng.

 A. AB={a;c}  

B. AB={a;b;c;d;e}        

C. AB={b}

D. AB={d;e}

Câu 4: Cho A, B là hai tập hợp bất kì. Phần gạch sọc trong hình vẽ bên dưới là tập hợp nào sau đây?

Bộ 10 đề thi Học kì 1 Toán 10 Chân trời sáng tạo có đáp án năm 2023 (ảnh 1) 

A. AB                  B. BA    

C. AB         D. AB

Câu 5: Trong số 50 học sinh của lớp 10A có 15 bạn được xếp loại học lực giỏi, 25 bạn được xếp loại hạnh kiểm tốt, trong đó có 10 bạn vừa được xếp loại học lực giỏi vừa được xếp loại hạnh kiểm tốt. Khi đó, lớp 10A có bao nhiêu bạn được khen thưởng, biết rằng muốn được khen thưởng bạn đó phải có học lực giỏi hoặc hạnh kiểm tốt.

A. 20                                  B. 30  

C. 35                                  D. 25

Câu 6: Cho A=(;m+1]; B=(1;+). Điều kiện để (AB)=R 

 A. m>1                    B. m2

C. m0                     D. m>2

Câu 7: Trong các cặp số sau đây, cặp nào là nghiệm của bất phương trình 2x+3y<1

 A. (2;1)        

B. (3;7) 

C. (0;1)     

D. (0;0)

Câu 7: Hình dưới đây là hình biểu diễn của bất phương trình nào (miền nghiệm là miền màu xanh)?

Bộ 10 đề thi Học kì 1 Toán 10 Chân trời sáng tạo có đáp án năm 2023 (ảnh 2) 

 A. x3y>1                 B. x3y<1  

C. 4x3y<1               D. 4x3y>1

Câu 8: Miền nghiệm của bất phương trình: 3x+2(y+3)4(x+1)y+3 là mặt phẳng chứa điểm.

A. (3,0)                              B. (3,1) 

C. (2,1)                              D. (0,0)

Câu 9: Công việc nào sau đây không phụ thuộc vào các công việc của môn thống kê ?

A. Thu thập số liệu.    

B. Trình bày số liệu.         

C. Phân tích và xử lý số liệu.   

D. Ra quyết định dựa trên số liệu

Câu 10: Cho mẫu số liệu thống kê {6,5,5,2,9,10,8}.Mốt của mẫu số liệu trên bằng bao nhiêu?

A. 5                                    B. 10

C. 2                                    D. 6

Câu 11: Cho dãy số liệu thống kê: 48,36,33,38,32,48,42,33,39. Khi đó số trung vị là

A. 32                                  B. 36 

C. 38                                  D. 40

Câu 12: Cho dãy số liệu thống kê: {8,10,12,14,16}.Số trung bình cộng của dãy số liệu thống kê đã cho là

A. 12                                  B. 14  

C. 13                                  D. 12.5

Câu 13: Điều tra về số học sinh của 1 trường THPT có 1120 học sinh khối 10, 1075 học sinh khối 11 và 900 học sinh khối 12. Hỏi kích thước mấu là bao nhiêu?

A. 1220                              B. 1075    

C. 900                                D. 3095

Câu 14: Chọn câu đúng trong bốn phương án trả lời đúng sau đây: độ lệch chuẩn là:

A. Bình phương của phương sai.

B. Một nửa của phương sai.

C. Căn bậc hai phương sai.

D. Không phải các công thức trên.

Câu 15: Tìm tập xác định D của hàm số y=x+1(x+1)(x2+3x+4).

A. D=R{1}.           B. D={1}.  

C. D=R{1}.        D. D=R.

Câu 16: Điểm nào sau đây không thuộc đồ thị hàm số y=x24x+4x.

A. A(2;0).      

 B. B(3;13).        

C. C(1;1).     

D. D(1;3).

Câu 17: Cho hàm số f(x)={2x+23x1x2x2+1x<2. Tính P=f(2)+f(2).

 A. P=83.       B. P=4.  

C. P=6.                       D. P=53.

Câu 18: Xét tính đồng biến, nghịch biến của hàm số f(x)=x24x+5 trên khoảng (;2) và trên khoảng (2;+). Khẳng định nào sau đây đúng?

     A. Hàm số nghịch biến trên (;2), đồng biến trên (2;+).

     B. Hàm số đồng biến trên (;2), nghịch biến trên (2;+).

     C. Hàm số nghịch biến trên các khoảng (;2)  (2;+).

     D. Hàm số đồng biến trên các khoảng (;2)  (2;+).

Câu 19: Cho hàm số bậc hai y=x2+x1. Trục đối xứng của đồ thị hàm số là:

 A. x=12  B. x=12  

C. y=12  D. y=12

Câu 20: Tìm tất cả các giá trị thực của tham số m để hàm số y=xm+2xm1 xác định trên (0;+).

A. m0.                     B. m1.

C. m1.                     D. m1.

Câu 21: Tam giác ABC  AB=5,BC=7,CA=8. Số đo góc A^ bằng:

A. 30.                 B. 45.   

C. 60.                 D. 90.

Câu 22: Tam giác ABC  AB=2,AC=3  C^=45. Tính độ dài cạnh BC.

A. BC=5.

B. BC=6+22.   

C. BC=622.   

D. BC=6.

Câu 23: Tam giác ABC  BC=21cm,CA=17cm,AB=10cm. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

A. R=852cm    

B. R=74cm   

C. R=858cm    

 D. R=72cm

Câu 24: Tam giác ABC vuông tại A  AB=6cm, BC=10cm. Tính bán kính r của đường tròn nội tiếp tam giác đã cho.

A. r=1 cm.                  B. r=2 cm 

C. r=2 cm.                  D. r=3 cm.

Câu 25: Cho hai điểm A  B phân biệt. Điều kiện để I là trung điểm AB là:

A. IA=IB.   

B. IA=IB.

C. IA=IB.  

D. AI=BI.

Câu 26: Cho AB=CD. Khẳng định nào sau đây đúng?

A. AB  CD cùng hướng.         

B. AB  CD cùng độ dài.

C. ABCD là hình bình hành.   

D. AB+DC=0.

Câu 27: Cho hình bình hành ABCD  O là giao điểm của hai đường chéo. Hỏi vectơ (AODO) bằng vectơ nào trong các vectơ sau?

A. BA.    

B. BC.      

C. DC.   

D. AC.

Câu 28: Cho hình vuông ABCD cạnh a. Tính AB.AC.

A. AB.AC=a2.      

B. AB.AC=a22.  

C. AB.AC=22a2.    

D. AB.AC=12a2.

Câu 29: Cho hình thoi ABCD  AC=8  BD=6. Tính AB.AC.

A. AB.AC=24.   

B. AB.AC=26.      

C. AB.AC=28.

D. AB.AC=32.

Câu 30: Cho hình bình hành ABCD  AB=8cm,AD=12cm, góc ABC^ nhọn và diện tích bằng 54cm2. Tính cos(AB,BC).

A. 2716   

B. 2716   

C. 5716  

D. 5716

Phần II. Tự luận (4 điểm):

Câu 1:

a. Cho hai tập hợp A=[2;3]  B=(1;+). Tìm AB.

b. Cho m là một tham số thực và hai tập hợp A=[12m;m+3], B={xR|x85m}. Tìm các giá trị m để AB=.

Câu 2: Cho hàm số y=x22(m+1)x+3m3có đồ thị (P). Biết hàm số đi qua M (3, 0)

a. Xác định hàm số

b. Vẽ bảng biến thiên, vẽ đồ thị (P).

Câu 3: Xác định chiều cao của một tháp mà không cần lên đỉnh của tháp. Đặt kế giác thẳng đứng cách chân tháp một khoảng CD=60m, giả sử chiều cao của giác kế là OC=1m. Quay thanh giác kế sao cho khi ngắm theo thanh ta nhình thấy đỉnh A của tháp. Đọc trên giác kế số đo của góc AOB^=600. Tính chiều cao của tháp, làm tròn kết quả đến hàng phần trăm.

Bộ 10 đề thi Học kì 1 Toán 10 Chân trời sáng tạo có đáp án năm 2023 (ảnh 3) 

Câu 4: Tìm tập các hợp điểm M thỏa mãn MB(MA+MB+MC)=0 với A,B,C là ba đỉnh của tam giác.

Hướng dẫn giải:

Phần I: Trắc nghiệm (6 điểm)

1.B

2.A

3.A

4.D

5.B

6.C

7.A

8.C

9.D

10.A

11.C

12.A

13.D

14.C

15.C

16.C

17.C

18.B

19.A

20.D

21.C

22.B

23.C

24.C

25.C

26.B

27.B

28.A

29.D

30.D

Câu 1 (NB):

Phương pháp:

Mệnh đề có tính đúng hoặc sai.

Cách giải:

b, c là mệnh đề

Chọn B.

Câu 2 (NB):

Phương pháp:

Tìm giá trị để mệnh đề đúng hoặc sai để khẳng định.

Cách giải:

A: Đúng vì x20 nên x2+1>0.

Chọn A.

Câu 3 (TH):

Phương pháp:

Dùng định nghĩa các phép toán trên tập hợp.

Cách giải:

A. Đúng vì {a;c} vừa thuộc tập A, vừa thuộc tập B.

B. HS nhầm là vừa thuộc A hoặc B.

C. HS nhầm là thuộc A và không thuộc B.

D. HS nhầm là thuộc B và không thuộc A.

Chọn A.

Câu 4 (NB):

Phương pháp:

Cách giải:

Theo biểu đồ Ven thì phần gạch sọc trong hình vẽ là tập hợp AB.

Chọn D.

Câu 5 (TH):

Phương pháp:

Tính số học sinh chỉ xếp loại giỏi, chỉ xếp hạnh kiểm tốt. Từ đó tính số học sinh có học lực giỏi hoặc hạnh kiểm tốt.

Cách giải:

Từ giả thiết bài toán, ta có:

Số các học sinh chỉ có học lực giỏi là: 1510=5.

Số các học sinh chỉ được xếp loại hạnh kiểm tốt là: 2510=15.

Tổng số học sinh có học lực giỏi hoặc hạnh kiểm tốt là 10+5+15=30.

Vậy có 30 học sinh được khen thưởng.

Chọn B.

Câu 6 (VD):

Phương pháp:

Dùng định nghĩa phép toán trên tập hợp hoặc vẽ tia số.

Cách giải:

Ta có: (AB)=R1m+1m2.

Chọn C.

Câu 7 (NB):

Phương pháp:

Thay tọa độ x, y vào bât phương trình và kiểm tra tính đúng sai

Cách giải:

Vì 2.0+3.0 = 0 <1 nên (0,0) thuộc miền nghiệm của bất phương trình

Chọn D.

Câu 7 (TH):

Phương pháp:

Lấy điểm bất kì thuộc hoặc không thuộc miền nghiệm để kiểm tra bất phương trình trong đáp án

Cách giải:

Ta thấy O(0,0) không thuộc miền nghiệm nên loại B,C

Đường thẳng qua (1,0) nên đáp án A đúng

Chọn A.

Câu 8 (TH):

Phương pháp:

Rút gọn bất phương trình và thay tọa độ các điểm vào bất phương trình để kiểm tra tính đúng sai.

Cách giải:

3x+2(y+3)>4(x+1)y+33x+2y+6>4x+4y+3x+3y>1

Vì thay x = 2, y = 1 vào bất phương trình ta thấy – 2 + 3.1 =1 nên (2,1) thuộc miền nghiệm

Chọn C.

Câu 9 (NB):

Phương pháp:

Cách giải:

Ra quyết định dựa trên số liệu không phụ thuộc vào công việc của môn Thống kê.

Chọn D.

Câu 10 (NB):

Phương pháp:

Mốt của dấu hiệu là giá trị có tần số lớn nhất.

Cách giải:

Vì 5 có tần suất là 2, còn 6,2,9,10,8 đều có tần suất là 1 nên mốt của dấu hiệu là 5.

Chọn A.

Câu 11 (TH):

Phương pháp:

Lập bảng tần số, sắp xếp các giá trị thống kê theo thứ tự không giảm.

Nếu có n (n lẻ) n = 2k+1 giá trị thì số trung vị bằng giá trị thứ k

Nếu có n (chẵn) n= 2k giá trị thì số trung vị bằng trung bình cộng 2 giá trị k-1 và k+1.

Cách giải:

32

33

36

38

39

42

48

1

2

1

1

1

1

2

Vì có 7 giá trị nên trung vị bằng số liệu thứ 4 là 38

Chọn C.

Câu 12 (TH):

Phương pháp:

Số trung bình là x¯=x1+x2+x3+...+xnn

Cách giải:

x¯=x1+x2+x3+...+xnn=8+10+12+14+165=12

Chọn A.

Câu 13 (TH):

Phương pháp:

Kích thước mẫu là số các số liệu thống kê.

Cách giải:

Kích thước mẫu bằng 1120+1075+900 = 3095

Chọn D.

Câu 14 (NB):

Phương pháp:

Độ lệch chuẩn là căn bậc hai của phương sai.

Cách giải:

Độ lệch chuẩn là căn bậc hai của phương sai.

Chọn C.

Câu 15 (TH):

Phương pháp:

Chú ý không rút gọn biểu thức trước khi tìm tập xác định.

Cách giải:

Hàm số xác định khi {x+10x2+3x+40x1.

Vậy tập xác định của hàm số là D=R{1}.

Chọn C.

Câu 16 (TH):

Phương pháp:

Thay tọa độ từng điểm và kiểm tra.

Cách giải:

Xét đáp án A, thay x=2  y=0 vào hàm số ta được0=224.2+42: thỏa mãn.

Xét đáp án B, thay x=3  y=13 vào hàm số ta được 13=324.3+43: thỏa mãn.

Xét đáp án C, thay x=1  y=1 vào hàm số ta được 1=124.1+411=1không thỏa mãn.

Chọn C.

Câu 17 (TH):

Phương pháp:

Kiểm tra các giá trị cần tính thuộc điều kiện nào của hàm số trước khi tính.

Cách giải:

Khi x2 thì f(2)=22+2321=1.

Khi x<2 thì .f(2)=(2)2+1=5.. Vậy f(2)+f(2)=6.

Chọn C.

Câu 18 (TH):

Phương pháp:

Tìm đỉnh dồ thị hàm số và vẽ bảng biến thiên.

Cách giải:

Đỉnh S (2, 1), bề lõm quay lên nên hàm số đồng biến trên (;2)và nghịch biến trên (2;+).

Chọn B.

Câu 19 (TH):

Phương pháp:

Trục đối xứng của hàm số bậc hai là x=b2a

Cách giải:

Trục đối xứng của hàm số bậc hai là x=b2a=12.1=12

Chọn A.

Câu 20 (VDC):

Phương pháp:

Tìm tập xác định của hàm số theo m

Cho tập hợp tìm được là tập con của (0;+).

Cách giải:

Hàm số xác định khi \left\{ \begin{array}{l}x - m \ge 0\\2x - m - 1 \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge m\\x \ge \frac{{m + 1}}{2}\end{array} \right. & \left(  *  \right).

Ÿ TH1: Nếu mm+12m1 thì ()xm. Suy ra tập xác định của hàm số là D=[m;+)

Khi đó, hàm số xác định trên (0;+) khi và chỉ khi (0;+)[m;+)m0.Không thỏa mãn điều kiện m1.

Ÿ TH2: Nếu mm+12m1 thì ()xm+12. Suy ra tập xác định của hàm số là D=[m+12;+).

Khi đó, hàm số xác định trên (0;+) khi và chỉ khi (0;+)[m+12;+) m+120m1 (Thỏa mãn điều kiện m1).  Vậy m1 thỏa yêu cầu bài toán.

Chọn D.

Câu 21 (NB):

Phương pháp:

Áp dụng định lý cosin cosA=b2+c2a22bc

Cách giải:

cosA=b2+c2a22bc=82+52722.8.5=12A=600

Chọn C.

Câu 22 (TH):

Phương pháp:

Áp dụng định lý cosin cosC=b2+a2c22ab

Cách giải:

Theo định lí hàm cosin, ta có

AB2=AC2+BC22.AC.BC.cosC^(2)2=(3)2+BC22.3.BC.cos45BC=6+22

Chọn B.

Câu 23 (TH):

Phương pháp

Áp dụng công thức Herong.

Cách giải:

Đặt p=AB+BC+CA2=24. Áp dụng công thức Hê – rông, ta có

SΔABC=p(pAB)(pBC)(pCA)=24.(2421).(2417).(2410)=84cm2.

Vậy bán kính cần tìm là SΔABC=AB.BC.CA4RR=AB.BC.CA4.SΔABC=21.17.104.84=858cm.

Chọn C.

Câu 24 (TH):

Phương pháp:

Dùng công thức S=p.r

Cách giải:

Dùng Pitago tính được AC=8, suy ra p=AB+BC+CA2=12.

Diện tích tam giác vuông S=12AB.AC=24.Lại có  

Chọn C.

Câu 25 (NB):

Phương pháp:

I là trung điểm của AB thì IA = IB và IA, IB ngược hướng

Cách giải:

IA = IB và IA, IB ngược hướng nên IA=IB.

Chọn C.

Câu 26 (TH):

Phương pháp:

Dùng định nghĩa hai vecto bằng nhau.

Cách giải:

Ta có AB=CD=DC. Do đó:

Ÿ AB  CD ngược hướng.

Ÿ AB  CD cùng độ dài.

Ÿ ABCD là hình bình hành nếu AB  CD không cùng giá.

Ÿ AB+CD=0.

Chọn B.

Câu 27 (NB):

Phương pháp:

Dùng quy tắc cộng hai veto và hai vecto bằng nhau.

Cách giải:

AODO=AO+OD=AD=BC

Chọn B.

Câu 28 (NB):

Phương pháp:

Tích vô hướng a.b=|a|.|b|.cos(a,b)

Cách giải:

Ta có (AB,AC)=BAC^=450 nên AB.AC=AB.AC.cos450=a.a.2.22=a2.

Chọn A.

Câu 29 (TH):

Phương pháp:

Tích vô hướng a.b=|a|.|b|.cos(a,b)

Cách giải:

Gọi giao điểm của AC và BD là O, giả thiết không cho góc, ta phân tích các vectơ  theo các vectơ có giá vuông góc với nhau.

Ta có AB.AC=(AO+OB)AC=AO.AC+OB.AC=12AC.AC+0=12AC2=32.

Chọn D.

Câu 30 (VD):

Phương pháp:

Tích vô hướng a.b=|a|.|b|.cos(a,b)

Cách giải:

Ta có SABCD=2SABC=54SABC=27cm2. Diện tích tam giác ABC là:

SABC=12.AB.BC.sinABC^=12.AB.AD.sinABC^sinABC^=2SABCAB.AD=2.278.12=912

cosABC^=1sin2ABC^=5716

Mặt khác góc giữa hai vecto AB,BC là góc ngoài góc ABC^.

Suy ra cos(AB,BC)=cos(1800ABC^)=cosABC^=5716.

Chọn D.

Phần II: Tự luận (4 điểm)

Câu 1 (TH):

Phương pháp:

Dùng định nghĩa hoặc biểu diễn trên tia số.

Cách giải:

a.  Biểu diễn trên trục số ta được:

 

b. Ta có A=[12m;m+3], B=[85m;+).

AB=  {m+3<85m12mm+3  {6m<53m2  {m<56m23  23m<56.

Câu 2 (TH):

Phương pháp:

Xác định đỉnh, trục đối xứng, các điểm mà đồ thị đi qua

Cách giải:

a. Vì y=x22(m+1)x+3m3 đi qua M (3, 0) nên thay x = 3, y = 0  ta có

0 = 9 – 2(m + 1).3 + 3m - 3. Suy ra  9 – 6m – 6 + 3m – 3 = 0. Suy ra  m = 0.

Vậy hàm số là y=x22x3

b. Đỉnh S của (P) có hoành độ x=(2)2.1=1. Suy ra tung độ đỉnh S là y = 1 – 2 - 3 = - 4.

Vậy S (1, - 4), trục đối xứng x = 1

Bảng biến thiên:

Bộ 10 đề thi Học kì 1 Toán 10 Chân trời sáng tạo có đáp án năm 2023 (ảnh 4) 

Đồ thị:

Bộ 10 đề thi Học kì 1 Toán 10 Chân trời sáng tạo có đáp án năm 2023 (ảnh 5) 

Đồ thị hàm số là 1 parabol có bề lõm quay lên, có đỉnh S (1,-4), trục đối xứng x = 1, cắt trục tung tại (0, -3), có giá trị nhỏ nhất bằng 0

Câu 3 (TH):

Phương pháp:

Dùng giá trị lượng giác trong tam giác vuông.

Cách giải:

Xét tam giác ABO vuông tại B. Khi đó AB=OB.tan600=60.tan600=603m

Ta có BD = OC =1 m.

Vậy chiều cao của tháp là AB + BD = 603+1104,92m

Câu 4 (TH):

Phương pháp:

Tính chất trọng tâm tam giác, chứng minh MBMG.

Cách giải:

Gọi G là trọng tâm tam giác ABC. Suy ra MA+MB+MC=3MG

Ta có MB(MA+MB+MC)=0MB.3MG=0MB.MG=0MBMG

Chứng tỏ MBMG hay M nhìn đoạn BG dưới một góc vuông nên tập hợp các điểm M là đường tròn đường kính BG.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án năm 2024 - 2025 - Đề 2

Phòng Giáo dục và Đào tạo .....

Đề thi Học kì 1 - Chân trời sáng tạo

Năm học 2024 - 2025

Môn: Toán 10

Thời gian làm bài: 90 phút

(Đề số 2)

MA TRẬN ĐỀ KIỂM TRA HỌC KỲ I

MÔN: TOÁN, LỚP 10 – THỜI GIAN LÀM BÀI: 90 phút

TT

Nội dung kiến
thức

Đơn vị kiến thức

Mức độ nhận thức

Tổng

%
tổng
điểm

Nhận biết

Thông hiểu

Vận dụng

Vận dụng cao

Số CH

Thời
gian
(phút)

Số
CH

Thời
gian
(phút)

Số
CH

Thời
gian
(phút)

Số
CH

Thời gian

(phút)

Số
CH

Thời
gian
(phút)

TN

TL

1

1. Mệnh đề. Tập hợp

1.1. Mệnh đề

1

1

 

 

 

 

 

 

1

0

3

4

1.2. Tập hợp. Các phép toán trên tập hợp

 

 

1

2

 

 

 

 

1

0

2

2. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Bất phương trình, hệ bất phương trình bậc nhất hai ẩn và ứng dụng

1

1

 

 

 

 

 

 

1

0

1

2

3

3. Hàm số bậc
hai
 và đồ thị

3.1. Hàm số và đồ thị

1

1

2

4

 

 

 

 

3

0

24

22

3.2. Hàm số bậc hai

1

1

2

4

1

6

1

8

3

2

4

4. Hệ thức lượng trong tam giác

4.1. Giá trị lượng giác của một góc từ 0° đến 180°

1

1

1

2

 

 

 

 

2

0

12

10

4.1. Định lí côsin và định lí sin

1

1

1

2

 

 

 

 

2

0

4.2. Giải tam giác và ứng dụng thực tế

 

 

 

 

1

6

 

 

1

0

5

5. Vectơ

5.1. Khái niệm vectơ

2

2

1

2

 

 

 

 

3

0

31

34

5.2. Tổng và hiệu của hai vectơ

1

1

3

6

 

 

 

 

4

0

5.3. Tích của vectơ với một số

1

1

1

2

1

6

1

7

3

1

5.4. Tích vô hướng của 2 vectơ

 

 

2

4

 

 

 

 

2

0

6

6. Số đúng và số gần đúng

6.1. Số gần đúng

2

2

2

4

 

 

 

 

4

0

 

 

19

 

 

28

6.2. Mô tả bằng bảng dữ liệu

2

2

 

 

 

 

 

 

2

0

6.3. Các số đặc trưng đo xu thế trung tâm

1

1

1

2

 

 

 

 

2

0

 

 

6.4. Các số đặc trưng đo độ phân tán

 

 

1

2

1

6

 

 

1

1

Tổng

 

15

15

18

36

4

24

2

15

35

4

90

 

Tỉ lệ (%)

 

 

 

 

 

70

30

 

100

Tỉ lệ chung (%)

 

 

 

 

 

 

100

 

BẢNG ĐẶC TẢ KĨ THUẬT ĐỀ KIỂM TRA HỌC KỲ I

MÔN: TOÁN 10 – THỜI GIAN LÀM BÀI: 90 phút

TT

Nội dung
kiến thức

Đơn vị
kiến thức

Mức độ kiến thức, kĩ năng cần kiểm tra, đánh giá

Số câu hỏi theo mức độ nhận thức

Nhận
biết

Thông
hiểu

Vận
dụng

Vận dụng
cao

1

1. Mệnh
đề. Tập
hợp

1.1. Mệnh đề

Nhận biết:

– Nhận biết được thế nào là mệnh đề toán học, tính đúng/sai của các mệnh đề toán học trong trường hợp đơn giản.

1

 

 

 

1.2. Tập hợp. Các phép toán trên tập hợp

Thông hiểu

– Thực hiện được phép toán trên các tập hợp (hợp, giao, hiệu của hai tập hợp, phần bù của một tập con) và biết dùng biểu đồ Ven để biểu diễn chúng trong những trường hợp cụ thể.

 

1

 

 

2

2. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Bất phương trình, hệ bất phương trình

bậc nhất hai ẩn và ứng dụng

Nhận biết:

– Nhận biết được bất phương trình và hệ bất phương trình bậc nhất hai ẩn

1

 

 

 

3

3. Hàm số bậc hai và đồ thị

3.1. Hàm số và đồ thị

Nhận biết:

– Nhận biết được những mô hình thực tế (dạng bảng, biểu đồ, công thức) dẫn đến khái

niệm hàm số.

Thông hiểu:

– Mô tả được các khái niệm cơ bản về hàm số: định nghĩa hàm số, tập xác định, tập giá

trị, hàm số đồng biến, hàm số nghịch biến, đồ thị của hàm số.

– Mô tả được các đặc trưng hình học của đồ thị hàm số đồng biến, hàm số nghịch biến.

1

2

 

 

3.2. Hàm số bậc hai

Nhận biết:

– Nhận biết được các tính chất cơ bản của Parabol như đỉnh, trục đối xứng.

Thông hiểu:

– Tính được bảng giá trị của hàm số bậc hai.

– Vẽ được Parabol (parabol) là đồ thị hàm số bậc hai.

– Nhận biết và giải thích được các tính chất của hàm số bậc hai thông qua đồ thị.

Vận dụng:

– Vận dụng được kiến thức về hàm số bậc hai và đồ thị vào giải quyết bài toán thực tiễn.

(ví dụ: xác định độ cao của cầu, cổng có hình dạng Parabol, ...).

Vận dụng cao:

- Vận dụng được kiến thức về hàm số bậc hai và đồ thị vào giải quyết các bài toán chứa tham số.

1

2

1

1

4

4. Hệ thức lượng trong tam giác

4.1. Giá trị lượng giác của một góc từ 0° đến 180°

Nhận biết:

– Nhận biết được giá trị lượng giác của một góc từ 0° đến 180°.

– Nhận biết được hệ thức liên hệ giữa giá trị lượng giác của các góc phụ nhau, bù nhau.

Thông hiểu:

– Tính được giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng máy tính cầm tay.

1

     1

 

 

4.2. Định lí côsin và định lí sin

Thông hiểu:

– Tính được giá trị lượng giác (đúng hoặc gần đúng) của một góc từ 0° đến 180° bằng

máy tính cầm tay.

– Giải thích được các hệ thức lượng cơ bản trong tam giác: định lí côsin, định lí sin, công thức tính diện tích tam giác.

 

 

1

 

 

1

 

 

4.3. Giải tam giác và ứng dụng thực tế

Vận dụng:

– Mô tả được cách giải tam giác và vận dụng được vào việc giải một số bài toán có nội

dung thực tiễn (ví dụ: xác định khoảng cách giữa hai địa điểm khi gặp vật cản, xác định

chiều cao của vật khi không thể đo trực tiếp,...).

 

 

1

 

5

5. Vectơ

5.1. Khái niệm vectơ

Nhận biết:

– Nhận biết được khái niệm vectơ, vectơ bằng nhau, vectơ-không.

Thông hiểu:

– Mô tả được một số đại lượng trong thực tiễn bằng vectơ.

– Thực hiện được các phép toán trên vectơ (tổng và hiệu hai vectơ, tích của một số với vectơ, tích vô hướng của hai vectơ) và mô tả được những tính chất hình học (ba điểm thẳng hàng, trung điểm của đoạn thẳng, trọng tâm của tam giác,...) bằng vectơ.

Vận dụng:

– Sử dụng được vectơ và các phép toán trên vectơ để giải thích một số hiện tượng có liên quan đến Vật lí và Hoá học (ví dụ: những vấn đề liên quan đến lực, đến chuyển động,...).

– Vận dụng được kiến thức về vectơ để giải một số bài toán hình học và một số bài toán liên quan đến thực tiễn (ví dụ: xác định lực tác dụng lên vật,...)

Vận dụng cao:

- Tìm tập hợp các điểm thỏa mãn một đẳng thức vectơ.

2

1

 

 

5.2. Tổng và hiệu của hai vectơ

1

3

 

 

5.3. Tích của vectơ với một số

1

1

1

1

5.4. Tích vô hướng của 2 vectơ

 

2

 

 

6

6. Số đúng và số gần đúng

6.1. Số gần đúng

Nhận biết:

- Nhận biết được khái niệm số đúng, số gần đúng, độ chính xác.

- Biết được cách biểu diễn số liệu bằng bảng hoặc biểu đồ.

Thông hiểu:

- Biết cách tính các số đo xu thế trung tâm, các số đặc trưng cho độ phân tán của mẫu số liệu.

- Biết được ý nghĩa của các số đo xu thế trung tâm, các số đặc trưng đo độ phân tán được sử dụng.

2

2

 

 

6.2. Mô tả bằng bảng dữ liệu

2

 

 

 

6.3. Các số đặc trưng đo xu thế trung tâm

1

1

 

 

6.4. Các số đặc trưng đo độ phân tán

 

1

1

 

Tổng

 

15

18

4

2

 

I. PHẦN TRẮC NGHIỆM (7 ĐIỂM)

Câu 1. Câu nào sau đây không là mệnh đề?

A. Bạn học giỏi quá!;

B. Tam giác đều là tam giác có ba cạnh bằng nhau;

C. 3 < 1;

D. 4 – 5 = 1.

Câu 2. Tập xác định D của hàm số fx=2x+2+xx là

A. D = [– 2; 2] \ {0};

B. D = [– 2; 2];             

C. D = (– 2; 2);                                               

D. D = ℝ.

Câu 3. Cho A = (– 1; 5] và B = (2; 7). Tập hợp A ∩ B bằng:

A. (2; 5];

B. [2; 5];

C. (2; 5);

D. [2; 5).

Câu 4. Cho tập hợp A=;m1B=1;+. Tất cả giá trị của m để AB= là

A. m ≤ 2;                         

B. m ≥  – 1;                     

C. m > 2;                          

D. m > – 2.

Câu 5. Miền nghiệm của hệ bất phương trình x+y1xy1x0 là

A. Miền tam giác;                                                   

B. Một nửa mặt phẳng;

C. Miền ngũ giác;                                                   

D. Miền tứ giác.

Câu 6. Giá trị cos113° + cos45° + cos67° bằng

A. 3;                             

B. 1;                                 

C. 22;

D. 0.

Câu 7. Cho tam giác ABC có AC = 2, BC = 5 và B^=18°. Số đo của góc A là:

A. 50°35’;

B. 51°34’;

C. 77°25’;

D. 7°6’.

Câu 8. Trong tam giác ABC, khẳng định nào sau đây đúng?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 9.  Cho hai vectơ a và b thỏa mãn a  .  b=3 và a=2,b=1. Góc giữa hai vectơ a và b bằng

A. 30°;                         

B. 90° ;                        

C. 60° ;                        

D. 45°.

Câu 10. Cho hình vuông ABCD tâm O cạnh a. Tính BO.BC ta được :

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 11. Cho a¯ = 12,096384. Số gần đúng của a¯ với độ chính xác d = 0,0004 là:

A. 12,096;

B. 12,09638;

C. 12,0964;

D. 12,10.

Câu 12. Cho hình vuông ABCD. Vectơ AB bằng vectơ nào sau đây?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 13. Cho hình thang ABCD . Mệnh đề nào dưới đây đúng?

A. Hai vectơ AB;BC cùng phương;                    

B. Hai vectơ AB;CD cùng hướng;

C. Hai vectơ AB;CD cùng phương;                    

D. Hai vectơ AB;DC ngược hướng.

Câu 14. Trong các hàm số sau, đồ thị của hàm số nhận đường thẳng x = 1 làm trục đối xứng là

A. y = – 2x2 + 4x + 1;

B. y = 2x2 + 4x + 3;

C. y = 2x2 – 2x + 1;

D. y = x2 – x + 5.

Câu 15. Cho hình bình hành ABCD . Đẳng thức vectơ nào sau đây đúng:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 16. Cho tam giác ABC vuông tại A, BC=a3, M là trung điểm của BC và có AM.BC=a22. Tính cạnh AB, AC:

A. AB = a, AC = a2;

B. AB = a2, AC = a2;

C. AB = a, AC = a;

D. AB = a2, AC = a.

Câu 17. Cho số gần đúng là a = 1,2357 với độ chính xác là d = 0,01. Số quy tròn của số a là: 

A. 1,24;

B. 1,2;

C. 1,236;

D. 1.

Câu 18. Hàm số nào dưới đây là hàm nghịch biến với mọi x ∈ ℝ?

A. y = 2x + 1;                  

B. y = – |x|;

C. y = x2 + 2x;

D. y = 3x – 1.

Câu 19. Cho các hàm số: f(x) = x+1, g(x) = 12x và h(x) = x2 – x. Trong các hàm số đã cho, số hàm chẵn là:

A. 0;

B. 1;

C. 2;

D. 3.

Câu 20. Cho hàm số y = (m – 2021)x + m – 2. Điều kiện để hàm số đồng biến trên  ℝ là

A. m < 2021;                         

B. m > 2021;                          

C. 2 < m < 2021;                   

D. m ≥ 2021.

Câu 21. Cho bảng biến thiên sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Đồ thị hàm số bậc hai tương ứng với bảng biến thiên trên là :

A. y = x2 + 2x – 1;        

B. y = x2 – 2x + 2;        

C. y = 2x2 – 4x + 4;      

D. y = – 3x2 + 6x – 1.

Câu 22. Cho hình chữ nhật ABCD tâm O. Gọi E, F lần lượt là trung điểm của OA và CD. Biết EF=aAB+bAD. Tính giá trị biểu thức a + b:

A. 14;                           

B. 34;                           

C. 12;                           

D. 1.

Câu 23. Giá trị ngoại lệ trong mẫu là

A. giá trị ở chính giữa trong dãy không giảm của mẫu số liệu;

B. giá trị xuất hiện nhiều nhất trong các giá trị của mẫu số liệu;

C. giá trị quá nhỏ hay quá lớn với đa số các giá trị của mẫu số liệu;

D. giá trị trung bình cộng của các giá trị của mẫu số liệu.

Câu 24. Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là:

A. Số trung bình cộng;

B. Trung vị;

C. Tứ phân vị;

D. Mốt.

Câu 25. Hàm số bậc hai có bảng biến thiên như hình vẽ có tọa độ điểm đỉnh là

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

A. I(– 3; 3);

B. I(0; – 3);

C. I(– 3; 0);

D. I(0; 0).

Câu 26. Cho điểm I là trung điểm của đoạn thẳng AB. Hỏi đẳng thức nào sau đây đúng?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 27.  Tìm m để hàm số y = (2m – 3)x + m + 1 đồng biến trên .

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 28. Cho hình thoi ABCD có cạnh bằng a và ABC^=60°. Độ dài AD+AB bằng

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 29. Cho hình vuông ABCD tâm O. Hỏi mệnh đề nào sau đây sai?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 30. Cho hàm số y = f(x) có bảng biến thiên như sau. Hàm số đã cho đồng biến trên khoảng:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 31. Chu vi của hình chữ nhật có chiều rộng là x = 3,456 ± 0,01 và chiều dài là y = 12,732 ± 0,015 và ước lượng sai số tuyệt đối mắc phải là

A. C = 32,376 ± 0,025; ∆C ≤ 0,05;

B. C = 32,376 ± 0,05; ∆C ≤ 0,025;

C. C = 32,376 ± 0,5; ∆C ≤ 0,5;

D. C = 32,376 ± 0,05; ∆C ≤ 0,05.

Câu 32. Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một ngọn hải đăng ở vị trí C. Góc nghiêng của phương quan sát từ các vị trí A, B tới ngọn hải đăng với đường đi của người quan sát là 25° và 42°. Biết khoảng cách giữa hai vị trí A và B là 80 m. Ngọn hải đăng cách bờ biển bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

A. 116 m;

B. 78 m;

C. 104 m;

D. 86 m.

Câu 33. Kết quả điều tra số con của 30 hộ gia đình thuộc một thôn được ghi lại trong bảng sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Số trung vị của dãy số liệu trên là

A. 3;

B. 2,5;

C. 2;

D. 4.

Câu 34. Biểu đồ dưới đây thể hiện diện tích lúa cả năm của hai tỉnh An Giang và Kiên Giang từ năm 2010 đến năm 2019 (đơn vị: nghìn hecta):

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Trong khoảng từ năm 2010 đến 2013 năm mà diện tích lúa tỉnh Kiên Giang gần gấp 1,2 lần diện tích lúa của tỉnh An Giang nhất là

A. 2010;

B. 2011;

C. 2012;

D. 2013.

Câu 35. Cho tam giác ABC có các góc A^=105°,B^=45°. Tỉ số ABAC bằng

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

II. PHẦN TỰ LUẬN (3 điểm)

Bài 1 (1,0 điểm). Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe hon đa Future Fi với chi phí mua một chiếc là 27 triệu đồng và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải bán với giá bao nhiêu sau khi giảm giá để lợi nhuận thu được là cao nhất.

Bài 2 (1,0 điểm). Cho tam giác ABC có G là trọng tâm. Gọi D và E lần lượt là các điểm thỏa mãn đẳng thức AD=2AB,AE=xAC.

a) Phân tích vectơ AG theo hai vectơAB và AC.

b) Tìm x để ba điểm D, G, E thẳng hàng. Với giá trị tìm được của x, hãy tính tỉ số DGDE.

Bài 3 (1,0 điểm). Người ta tiến hành phỏng vấn một số người về chất lượng của một sản phẩm mới, người điều tra yêu cầu cho điểm sản phẩm (thang điểm 100) kết quả như sau:

80

65

51

58

77

12

75

58

73

79

42

62

84

56

51

82

a) Tìm phương sai và độ lệch chuẩn. Nhận xét về các kết quả nhận được.

b) Tìm giá trị bất thường.

HƯỚNG DẪN ĐÁP ÁN VÀ THANG ĐIỂM

I. PHẦN TRẮC NGHIỆM

Câu 1

A

Câu 8

A

Câu 15

B

Câu 22

D

Câu 29

D

Câu 2

A

Câu 9

A

Câu 16

A

Câu 23

C

Câu 30

B

Câu 3

A

Câu 10

B

Câu 17

B

Câu 24

D

Câu 31

D

Câu 4

C

Câu 11

C

Câu 18

D

Câu 25

C

Câu 32

B

Câu 5

A

Câu 12

C

Câu 19

A

Câu 26

D

Câu 33

C

Câu 6

C

Câu 13

C

Câu 20

B

Câu 27

D

Câu 34

D

Câu 7

A

Câu 14

A

Câu 21

C

Câu 28

B

Câu 35

B

 

Hướng dẫn chi tiết:

I. PHẦN TRẮC NGHIỆM (7 ĐIỂM)

Câu 1.

Hướng dẫn giải

Đáp án đúng là A

Câu “Bạn học giỏi quá!” là câu cảm thán không xác định được tính đúng sai nên câu này không phải mệnh đề. Do đó A đúng.

Câu 2.

Hướng dẫn giải

Đáp án đúng là A

Hàm số xác định khi và chỉ khi 2x02+x0x0x2x2x02x2,x0.

Do đó tập xác định của hàm số là: D = [– 2; 2] \ {0}.

Vậy đáp án đúng là A.

Câu 3.

Hướng dẫn giải

Đáp án đúng là A

Ta có:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Khi đó A ∩ B = (2; 5].

Câu 4.

Hướng dẫn giải

Đáp án đúng là: C

Để AB= thì m – 1 > 1 ⇔ m > 2.

Câu 5.

Hướng dẫn giải

Đáp án đúng là: A

Miền nghiệm của hệ bất phương trình là miền trong tam giác không tô màu trong hình.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 6.

Hướng dẫn giải

Đáp án đúng là: C

cos113° + cos45° + cos67°

= cos(180° – 67°) + cos67° + cos45°

= – cos67° + cos67° + cos45°

= 0 + 22

22.

Câu 7.

Hướng dẫn giải

Đáp án đúng là: A

Áp dụng định lí sin trong tam giác ABC, ta được:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 8.

Hướng dẫn giải

Đáp án đúng là: A

Áp dụng định lí cosin trong tam giác ABC ta có:

a2=b2+c22bc.cosA.

Câu 9.  

Hướng dẫn giải

Đáp án đúng là: A

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 10.

Hướng dẫn giải

Đáp án đúng là: B

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 11.

Hướng dẫn giải

Đáp án đúng là C

Hàng của chữ số khác 0 đầu tiên của độ chính xác là hàng phần chục nghìn. Quy tròn số a¯ đến hàng phần chục nghìn ta được số gần đúng của a¯ là: 12,0964.

Câu 12.

Hướng dẫn giải

Đáp án đúng là: C

Vectơ DC cùng hướng với AB.

Câu 13.

Hướng dẫn giải

Đáp án đúng là: C

Hai vectơ AB;CD cùng phương nhưng  ngược hướng. Do đó C đúng và B sai.

Hai vectơ AB;DC cùng hướng. Do đó D sai.

Hai vectơ AB;BC không cùng phương. Do đó A sai.

Câu 14.

Hướng dẫn giải

Đáp án đúng là A

Ta có:

Hàm số bậc hai y = – 2x2 + 4x + 1 có a = – 2, b = 4, c = 1. Khi đó trục đối xứng là x = b2a=42.(2)=1.

Hàm số bậc hai y = 2x2 + 4x + 3 có a = 2, b = 4, c = 3. Khi đó trục đối xứng là x = b2a=42.2=1.

Hàm số bậc hai y = 2x2 – 2x + 1 có a = 2, b = – 2, c = 1. Khi đó trục đối xứng là x = b2a=22.2=12.

Hàm số bậc hai y = x2 – x + 5 có a = 1, b = –1, c = 5. Khi đó trục đối xứng là x = b2a=12.2=14.

Câu 15.

Hướng dẫn giải

Đáp án đúng là: B

Áp dụng quy tắc hình bình hành ta được: DA+DC=DB.

Câu 16.

Hướng dẫn giải

Đáp án đúng là: A

Xét tam giác ABC vuông tại A, có:

AM = 12BC =a32.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Xét tam giác ABM:

Áp dụng định lí cosin trong tam giác ABM, có:

AB2 = AM2 + BM2 – 2.AM.BM.cosAM.BC

⇔ AB2 = a322+a3222.a32.a32.13 

⇔ AB2 = a2

⇔ AB = a

Áp dụng định lí Pythagore trong tam giác ABC, ta được:

AC2 = BC2 – AB2 = 3a2 – a2 = 2a2

⇔ AC = 2a.

 Vậy AB = a và AC = 2a.

Câu 17.

Hướng dẫn giải

Đáp án đúng là B

Hàng lớn nhất của độ chính xác là hàng phần trăm thì ta cần làm tròn đến hàng phần mười. Khi đó ta có số quy tròn của số gần đúng a là 1,2.

Câu 18.

Hướng dẫn giải

Đáp án đúng là: D

Hàm số y = ax + b nghịch biến trên ℝ khi a < 0. Do đó D đúng và A sai.

Hàm số y = – |x| vừa đồng biến và nghịch biến trên ℝ.

Hàm số y = x2 + 2x vừa đồng biến và nghịch biến trên ℝ.

Câu 19.

Hướng dẫn giải

Đáp án đúng là: A

+) Xét hàm số: f(x) = x+1, có TXĐ: D = [ – 1; +∞).

Lấy x ∈ D và – x ∈ D

Khi đó f(– x) = x+1 ≠ f(x).

Do đó hàm số không chẵn cũng không lẻ.

+) Xét hàm số g(x) = 12x có TXĐ D = ℝ

Lấy x ∈ D và – x ∈ D

Khi đó: g( – x) = 12x=12x= – g(x).

Do đó hàm số đã cho là hàm lẻ.

+) Xét hàm số h(x) = x2 – x

Lấy x ∈ D và – x ∈ D

Khi đó: h( – x) = (– x)2 – (– x) = x2 + x ≠ h(x).

Do đó hàm số đã cho là hàm không chẵn cũng không lẻ.

Vậy không có hàm số nào chẵn.

Câu 20.

Hướng dẫn giải

Đáp án đúng là B

Để hàm số y = (m – 2021)x + m – 2 đồng biến trên ℝ khi m – 2021 > 0 ⇔ m > 2021.

Vậy với m > 2021 thì hàm số đồng biến trên ℝ.

Câu 21.

Hướng dẫn giải

Đáp án đúng là C

Gọi hàm số bậc hai cần tìm là: y = ax2 + bx + c (với a, b, c ∈ ℝ, a ≠ 0)

Dựa vào bảng biến thiên ta thấy a > 0 nên đáp án D sai.

Ta có: xI = b2a=1 ⇔ b = – 2a. Do đó A sai.

Ta lại có: yI = Δ4a=2⇔ ∆ = – 8a ⇔ b2 – 4ac = – 8a ⇔ 4a2 – 4ac = – 8a ⇔ a – c = – 2 ⇔ c = a + 2

+) Nếu a = 1 thì b = – 2 và c = 3. Do đó B sai.

+) Nếu a = 2 thì b = – 4 và c = 4. Do đó C đúng.

Câu 22.

Hướng dẫn giải

Đáp án đúng là D

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 23. 

Hướng dẫn giải

Đáp án đúng là: C

Giá trị ngoại lệ là giá trị quá nhỏ hoặc quá lớn so với các giá trị khác trong mẫu số liệu.

Câu 24. 

Hướng dẫn giải

Đáp án đúng là:

Số liệu xuất hiện nhiều nhất trong mẫu số liệu được gọi là mốt của số liệu, kí hiệu là M0.

Câu 25. Hướng dẫn giải

Đáp án đúng là: C

Dựa vào bảng biến thiên ta có điểm đỉnh I có tọa độ I(– 3; 0).

Câu 26.

Hướng dẫn giải

Đáp án đúng là: D

Vì I là trung điểm của đoạn thẳng AB nên ta có: IA+IB=0AI=IB.

Câu 27. 

Hướng dẫn giải

Đáp án đúng là: D

Để hàm số đã cho đồng biến trên ℝ thì 2m – 3 > 0 ⇔ m > 32.

Câu 28.

Hướng dẫn giải

Đáp án đúng là B

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Xét tam giác ABC có AB = BC nên tam giác ABC cân tại B mà ABC^=60°. Do đó tam giác ABC đều

Suy ra AB = BC = AC = a.

Ta có: AD+AB=AC

AD+AB=AC=a.

Câu 29.

Hướng dẫn giải

Đáp án đúng là D

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 30.

Hướng dẫn giải

Đáp án đúng là: B

Hàm số đồng biến (đi lên) trên khoảng ;1.

Câu 31.

Hướng dẫn giải

Đáp án đúng là: D

Ta có: 3,446 ≤ x ≤ 3,466 và 12,717 ≤ y ≤ 12,747

Khi đó chu vi C = 2(x + y) của hình chữ nhật nằm trong khoảng: 32,326 ≤ C ≤  32,426

Suy ra 32,376 – 0,05 ≤ C ≤ 32,376 + 0,05 hay C = 32,376 ± 0,05.

Ta có độ chính xác là d = 0,05

Suy ra sai số tuyệt đối của C là: ∆C ≤ 0,05.

Câu 32.

Hướng dẫn giải

Đáp án đúng là: B

Kẻ CH vuông góc với bờ AB.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Xét tam giác ABC, có:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Vậy khoảng cách từ ngọn hải đăng tới bờ là khoảng 78 m.

Câu 33.

Hướng dẫn giải

Đáp án đúng là: C

Ta có bảng tần số sau:

Số con (x)

0

1

2

3

4

Tần số (n)

2

4

17

5

2

 

Dựa vào bảng tần số trên ta có số trung vị của dãy số liệu là trung bình cộng của số liệu thứ 15 và số liệu thứ 16 là: Q2 = 2+22=2.

Câu 34.

Hướng dẫn giải

Đáp án đúng là: D

Năm 2010: Diện tích lúa của Kiên Giang là 640 (hecta), của An Giang là 590 (hecta). Do đó diện tích lúa của Kiên Giang gấp: 640 : 590 ≈ 1,08 (lần) diện tích lúa của An Giang.

Năm 2011: Diện tích lúa của Kiên Giang là 690 (hecta), của An Giang là 610 (hecta). Do đó diện tích lúa của Kiên Giang gấp: 690 : 610 ≈ 1,13 (lần) diện tích lúa của An Giang.

Năm 2012: Diện tích lúa của Kiên Giang là 720 (hecta), của An Giang là 620 (hecta). Do đó diện tích lúa của Kiên Giang gấp: 720 : 620 ≈ 1,16 (lần) diện tích lúa của An Giang.

Năm 2013: Diện tích lúa của Kiên Giang là 760 (hecta), của An Giang là 649 (hecta). Do đó diện tích lúa của Kiên Giang gấp: 760 : 649 ≈ 1,17 (lần) diện tích lúa của An Giang.

Câu 35.

Hướng dẫn giải

Đáp án đúng là: B

Xét tam giác ABC, có:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

II. Tự luận (3 điểm)

Bài 1 (1,0 điểm).

Hướng dẫn giải

Gọi số tiền mà doanh nghiệp A dự định giảm giá là x ( triệu đồng) (0 ≤ x ≤ 4).

Tiền lãi khi bán được một xe là: 31 – x – 27 = 4 – x (triệu đồng).

Số lượng xe bán được khi đã giảm giá là: 600 + 200x (xe).

Lợi nhuận cửa hàng thu được là: (600 + 200x)(4 – x) = – 200x2 + 200x + 2 400 (triệu đồng).

Xét hàm số bậc hai y = – 200x2 + 200x + 2 400, có:

Đỉnh I có tọa độ: xI = b2a=2002.200=12; yS = Δ4a=1  960  0004.200=2  450.

Hay I12;2​​​  450

Ta có bảng biến thiên:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Dựa vào bảng biến thiên ta thấy, hàm số đạt giá trị lớn nhất là 2 450 khi x = 12.

Vậy doanh nghiệp phải bán với giá 30,5 triệu đồng để lợi nhuận thu được là cao nhất.

Bài 2 (1,0 điểm).

Hướng dẫn giải

a) Gọi M là trung điểm của BC

Xét tam giác ABC, có:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Bài 3 (1,0 điểm).

Hướng dẫn giải

Ta có bảng tần số sau:

Điểm

12

42

51

56

58

62

65

73

75

77

79

80

82

84

Tần số

1

1

2

1

2

1

1

1

1

1

1

1

1

1

a) Số trung bình cộng:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Độ lệch chuẩn:

S=S218.

Nhận xét: Mức độ chênh lệch giữa các điểm là khá lớn.

b) Dãy số liệu có tất cả 16 số liệu, nên số trung vị là trung bình cộng của dãy số liệu ở vị trí 8 và vị trí thứ 9 ta được: Q2=62+652=63,5.

Nửa số liệu bên trái gồm: 12; 42; 51; 51; 56; 58; 58; 62 gồm 8 giá trị. Do đó tứ phân vị thứ nhất là Q1=51+562=53,5.

Nửa số liệu bên trái gồm: 65; 73; 75; 77; 79; 80; 82; 84 gồm 8 giá trị. Do đó tứ phân vị thứ ba là Q3=77+792=78.

Suy ra khoảng tứ phân vị là: ∆Q = Q3 – Q1 = 78 – 53,5 ≈ 24,5.

Ta có: Q3 + 1,5.∆Q = 114,75 và Q1 – 1,5.∆Q = 16,75.

Ta thấy 12 < 16,75 nên 12 là giá trị ngoại lệ.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án năm 2024 - 2025 - Đề 3

Phòng Giáo dục và Đào tạo .....

Đề thi Học kì 1 - Chân trời sáng tạo

Năm học 2024 - 2025

Môn: Toán 10

Thời gian làm bài: 90 phút

(Đề số 3)

I. PHẦN TRẮC NGHIỆM (7 ĐIỂM)

Câu 1: Cho định lý “Hai góc đối đỉnh thì bằng nhau”. Mệnh đề nào sau đây đúng?

A. Hai góc bằng nhau là điều kiện cần và đủ để hai góc đó đối đỉnh;

B. Hai góc đối đỉnh là điều kiện cần để hai góc đó bằng nhau;

C. Hai góc bằng nhau là điều kiện đủ để hai góc đó đối đỉnh;            

D. Hai góc đối đỉnh là điều kiện đủ để hai góc đó bằng nhau.

Câu 2: Cho tập hợp A = {x ∈ ℝ| – 1 ≤ x < 3}. Xác định phần bù của tập hợp A trong ℝ.

A. 5;+;

B. ;13;+;

C. ;1;                 

D. ;13;+.

Câu 3: Hệ nào dưới đây là hệ bất phương trình bậc nhất hai ẩn?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 4: Một bệnh viện thống kê số ca nhập viện do tai nạn giao thông mỗi ngày trong tháng 9/2020 ở bảng sau:

Số ca

0

1

2

3

4

5

6

7

8

9

12

15

Số ngày

2

3

4

6

3

2

2

3

2

1

1

1

Khoảng tứ phân vị của dãy số liệu trên là:

A. 3,5;

B. 2;

C. 5;

D. 7.

Câu 5: Cho hàm số y = x2 – 2x – 2 có đồ thị là parabol (P) và đường thẳng (d) có phương trình y = x + m. Giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B sao cho OA2 + OB2 đạt giá trị nhỏ nhất là:

A. m=52;

B. m=52;

C. m = 1;                      

D. m = 2.

Câu 6: Hà ghi lại số liệu từ trang web của Tổng cục thống kê bảng dân số Việt Nam qua các năm từ 2015 đến 2020:

Năm

Số dân

2015

92 677 076

2016

93 640, 422

2017

94 600 648

2018

95 545 962

2019

96 462 106

2020

97 338 579

Bạn Hà đã ghi nhầm dân số của năm nào?

A. 2015;

B. 2016;

C. 2019;

D. 2020.

Câu 7: Hàm số nào dưới đây là hàm số không chẵn cũng không lẻ?

A. y = – 2|x – 1|;                    

B. y = x3 – 5x;                        

C. y=x2+2;

D. y = – x.

Câu 8: Trong các hàm số sau, đồ thị của hàm số nhận đường thẳng x = 1 làm trục đối xứng là

A. y = – 2x2 + 4x + 1;

B. y = 2x2 + 4x + 3;

C. y = 2x2 – 2x + 1;

D. y = x2 – x + 5.

Câu 9: Tập xác định D của hàm số  fx=2x+2+xx là

A. D = [– 2; 2] \ {0};

B. D = [– 2; 2];             

C. D = (– 2; 2);                                               

D. D = ℝ.

Câu 10: Cho hàm số y = (m – 2021)x + m – 2. Điều kiện để hàm số đồng biến trên  ℝ là

A. m < 2021;                         

B. m > 2021;                          

C. 2 < m < 2021;                   

D. m ≥ 2021.

Câu 11: Cho tanα=13, với 0° < α < 90°. Giá trị của cosα bằng:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 12: Tính giá trị biểu thức sau: sin12° + sin178° + cos106° + cos74°

A. 2sin12°;                   

B. 2cos74°;                  

C. cos74°;                    

D. sin12°.

Câu 13: Cho tam giác ABC có AB = 2, BAC^=85° và ACB^=40°. Độ dài cạnh AC là:

A. 2,55;                        

B. 3,10;                        

C. 1,57;                        

D. 1,29.

Câu 14: Cho bảng biến thiên sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Đồ thị hàm số bậc hai tương ứng với bảng biến thiên trên là :

A. y = x2 + 2x – 1;        

B. y = x2 – 2x + 2;        

C. y = 2x2 – 4x + 4;      

D. y = – 3x2 + 6x – 1.

Câu 15: Phát biểu nào sau đây là sai?

A. Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó.

B. Vectơ là đoạn thẳng có hướng.

C. Hai vectơ cùng hướng thì cùng phương.

D. Hai vectơ cùng phương thì cùng hướng.

Câu 16: Cho hình vuông ABCD. Hãy chọn khẳng định đúng.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 17: Cho hình vẽ sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Trong các vectơ trên hình, có bao nhiêu vectơ cùng phương với vectơ MN?

A. 3;

B. 5;

C. 6;

D. 7.

Câu 18: Để lắp đường dây cao thế từ vị trí A đến vị trí B phải tránh một ngọn núi, do đó người ta phải nối thẳng đường dây từ vị trí A đến vị trí C dài 9 km, rồi nối từ vị trí C đến B dài 12km. Biết góc tạo bởi 2 đoạn dây AC và CB là 52°. Hỏi so với việc nối thẳng từ A đến B phải tốn thêm bao nhiêu mét dây?

A. 9,6; 

B. 11,4;

C. 92,0;

D. 71,0.

Câu 19: Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Chọn khẳng định đúng trong các khẳng định sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 20: Cho hình bình hành ABCD. Biểu thức DADB+DC bằng:

A. 0;                                      

B. 2DC;

C. 2DA;

D. 2DB.

Câu 21: Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ MA+MB+MC bằng:

A. 1;                                       

B. 6;                                       

C. 3;                                   

D. 3.

Câu 22: Cho a¯ = 12,096384. Số gần đúng của a¯ với độ chính xác d = 0,0004 là:

A. 12,096;

B. 12,09638;

C. 12,0964;

D. 12,10.

Câu 23: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC và CD. Đặt a=AMc=AN . Hãy phân tích vectơ AC theo 2 vectơ a và b:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 24: Cho số gần đúng là a = 1,2357 với độ chính xác là d = 0,01. Số quy tròn của số a là: 

A. 1,24;

B. 1,2;

C. 1,236;

D. 1.

Câu 25: Cho hình thoi ABCD có cạnh bằng 4. ABC^=120°. Tính AC.AD:

A. 8;

B. 16;

C. 24;

D. 32.

Câu 26: Cho hình thang vuông ABCD có  A^=D^=90°. Tính AB.AD:

A. 0;

B. 32;

C. 12;

D. 1.

Câu 27: Cho mẩu tin sau:

Trong tháng 01/2021 có 47 dự án được cấp phép mới với số vốn đăng kí đạt gần 1,3 tỉ USD, giảm khoảng 81,8% về số dự án và 70,3% về số vốn đăng kí so với cùng kì năm trước; 46 lượt dự án đã cấp phép từ các năm trước đăng kí điều chỉnh vốn đầu tư với số vốn tăng thêm trên 0,5 tỉ USD, tăng gần 41,4%.

Trong các số liệu đã cho trong bài, số số gần đúng là:

A. 2;

B. 3;

C. 4;

D. 5.

Câu 28: Cho tam giác ABC đều có cạnh bằng a, gọi H là trung điểm của cạnh BC. Độ dài của vectơ HA+AC bằng

A. a;                                       

B. a2;                                     

C. a32;                                 

D. a3.

Câu 29: Lớp 10A có 40 học sinh. Tỉ lệ số lượng mỗi loại học lực của học sinh lớp 10A được biểu diễn bằng biểu đồ sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hỏi số lượng học sinh khá của lớp 10A là:

A. 1;

B. 2;

C. 15;

D. 22.

Câu 30: Một xạ thủ bắn súng 10 lần liên tiếp, số điểm của xạ thủ đạt được được ghi lại trong bảng sau:

Số lần

Lần 1

Lần 2

Lần 3

Lần 4

Lần 5

Lần 6

Lần 7

Lần 8

Lần 9

Lần 10

Số điểm

8

6

7

6

9

8

10

7

7

8

Số trung vị của số liệu trên là:

A. 6,5;

B. 7;

C. 8;

D. 7,5.

Câu 31: Thực hiện đo chiều cao (đơn vị cm) của các bạn học sinh tổ 1 của lớp 10D và được ghi lại như sau: 154; 172; 164; 145; 160; 151; 152; 181. Chiều cao trung bình của các bạn tổ 1 là:

A. 155;

B. 160;

C. 170;

D. 150.

Câu 32: Số huy chương vàng trong các giải thể thao quốc tế mà đoàn thể thao Việt Nam trong các giải đấu ở châu Á trong các năm từ 2010 đến 2019 được thống kê trong bảng sau:

Năm

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

Số huy chương

39

43

115

52

56

62

130

82

74

120

Độ lệch chuẩn của số liệu trên là:

A. 77,3;

B. 1002,61;

C. 31,664;

D. 91.

Câu 33: Máy bay A bay với vận tốc a, máy bay B bay cùng hướng và có tốc độ chỉ bằng một nửa máy bay A. Biểu diễn vectơ vận tốc b của máy bay B theo vectơ vận tốc acủa máy bay A là:

A. b=12a;

B. b=2a;

C. b=14a;

Db=a.

Câu 34: Khoảng đồng biến và nghịch biến của hàm số y = 2x+1là:

A. (– ∞; –1) và (–1; + ∞);

B. ℝ\{– 1};

C. (– ∞; –1);

D. (–1; + ∞).

Câu 35: Tứ giác ABCD có DB=kDC+DA. Khi đó tứ giác ABCD là hình:

A. hình thang;

B. hình bình hành;

C. hình vuông;

D. hình chữ nhật.

II. PHẦN TỰ LUẬN (3 ĐIỂM)

Câu 1 (1 điểm).

Cho hình chữ nhật ABCD, M là một điểm bất kì. Chứng minh: MA+MC=MB+MD.

Câu 2 (0,5 điểm). Cho tam giác  ABC có AB=a,AC=a3  và -->BAC^=30°. Gọi I là điểm thỏa mãn IB+2IC=0. Tính độ dài đoạn thẳng AI

Câu 3 (1 điểm). Cổng chào Yên Lạc có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với đất). Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xác. Hãy tính độ cao của cổng (tính từ mặt đất đến điểm cao nhất của cổng).

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 4 (0,5 điểm). Nam đo được đường kính của một hình tròn là 24 ± 0,2 cm. Nam tính được chu vi đường tròn là C = 75,36. Hãy ước lượng sai số tuyệt đối của C, biết 3,141 < π < 3,142.

HƯỚNG DẪN ĐÁP ÁN VÀ THANG ĐIỂM

I. PHẦN TRẮC NGHIỆM

Câu 1

D

Câu 8

A

Câu 15

D

Câu 22

C

Câu 29

C

Câu 2

B

Câu 9

A

Câu 16

B

Câu 23

D

Câu 30

D

Câu 3

B

Câu 10

B

Câu 17

D

Câu 24

B

Câu 31

B

Câu 4

C

Câu 11

C

Câu 18

A

Câu 25

C

Câu 32

C

Câu 5

A

Câu 12

A

Câu 19

B

Câu 26

A

Câu 33

A

Câu 6

B

Câu 13

A

Câu 20

A

Câu 27

D

Câu 34

A

Câu 7

A

Câu 14

C

Câu 21

D

Câu 28

B

Câu 35

A

Hướng dẫn chi tiết:

Câu 1: Cho định lý “Hai góc đối đỉnh thì bằng nhau”. Mệnh đề nào sau đây đúng?

A. Hai góc bằng nhau là điều kiện cần và đủ để hai góc đó đối đỉnh;

B. Hai góc đối đỉnh là điều kiện cần để hai góc đó bằng nhau;

C. Hai góc bằng nhau là điều kiện đủ để hai góc đó đối đỉnh;            

D. Hai góc đối đỉnh là điều kiện đủ để hai góc đó bằng nhau.

Hướng dẫn giải

Đáp án đúng là D

Từ định lý “Hai góc đối đỉnh thì bằng nhau”, ta có thể phát biểu lại định lí này như sau:

Hai góc đối đỉnh là điều kiện đủ để hai góc đó bằng nhau. Do đó D đúng và B sai.

Hai góc bằng nhau là điều kiện cần để hai góc đó đối đỉnh. Do đó C sai.

Vì hai góc bằng nhau nhưng chưa chắc đối đỉnh do đó đáp án A là sai.

Câu 2: Cho tập hợp A = {x ∈ ℝ| – 1 ≤ x < 3}. Xác định phần bù của tập hợp A trong ℝ.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hướng dẫn giải

Đáp án đúng là B

Ta có: A = {x ∈ ℝ| – 1 ≤ x < 3} = [ – 1; 3)

Khi đó ℝ \ A = ℝ \ [ – 1; 3) = (– ∞; – 1) ∪ [3; + ∞).

Câu 3: Hệ nào dưới đây là hệ bất phương trình bậc nhất hai ẩn?

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hướng dẫn giải

Đáp án đúng là B

Hệ bất phương trình bậc nhất hai ẩn là hệ gồm các bất phương trình bậc nhất hai ẩn. Do đó đáp án B là đúng.

Câu 4: Một bệnh viện thống kê số ca nhập viện do tai nạn giao thông mỗi ngày trong tháng 9/2020 ở bảng sau:

Số ca

0

1

2

3

4

5

6

7

8

9

12

15

Số ngày

2

3

4

6

3

2

2

3

2

1

1

1

Khoảng tứ phân vị của dãy số liệu trên là:

A. 3,5;

B. 2;

C. 5;

D. 7.

Hướng dẫn giải

Đáp án đúng là C

Dãy số liệu trên có 30 số liệu.

Số trung vị của dãy số liệu là số trung bình cộng của số liệu ở vị trí thứ 15 và 16: Q2 = 3+42=3,5.

Số trung vị của nửa số liệu bên trái là: Q1 = 2.

Số trung vị của nửa số liệu bên phải là: Q2 = 7.

Khoảng tứ phân vị ∆Q = Q2 – Q1 = 7 – 2 = 5.

Câu 5: Cho hàm số y = x2 – 2x – 2 có đồ thị là parabol (P) và đường thẳng (d) có phương trình y = x + m. Giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B sao cho OA2 + OB2 đạt giá trị nhỏ nhất là:

A. m=52;

B. m=52;

C. m = 1;                      

D. m = 2.

Hướng dẫn giải

Đáp án đúng là A

Xét phương trình hoành độ giao điểm:

x2 – 2x – 2 = x + m (1)

⇔ x2 – 3x – 2 – m = 0

Ta có: ∆ = (– 3)2 – 4.1.(– 2 – m) = 17 + 4m

Để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A, B thì phương trình (1) có hai nghiệm phân biệt ⇔ ∆ = 17 + 4m > 0 ⇔ m > >174>.

Gọi x1 và x2 là nghiệm của phương trình (1).

Áp dụng định lí Vi – et ta được: x1+x2=3x1.x2=2m.

Đặt A(x1; y1) và B(x2; y2)

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Vậy OA2 + OB2 đạt giá trị nhỏ nhất bằng 272 khi m = 52.

Câu 6: Hà ghi lại số liệu từ trang web của Tổng cục thống kê bảng dân số Việt Nam qua các năm từ 2015 đến 2020:

Năm

Số dân

2015

92 677 076

2016

93 640, 422

2017

94 600 648

2018

95 545 962

2019

96 462 106

2020

97 338 579

Bạn Hà đã ghi nhầm dân số của năm nào?

A. 2015;

B. 2016;

C. 2019;

D. 2020.

Hướng dẫn giải

Đáp án đúng là B

Dân số Việt Nam năm 2016 là 93 640 422 (người). Do đó bạn Hà ghi sai số liệu năm 2016.

Câu 7: Hàm số nào dưới đây là hàm số không chẵn cũng không lẻ?

A. y = – 2|x – 1|;                    

B. y = x3 – 5x;                        

C. y=x2+2;                     

D. y = – x.

Hướng dẫn giải

Đáp án đúng là A

Tập xác định của các hàm số đã cho là D = ℝ

Lấy x ∈ D khi đó – x  ∈ D, ta có:

+) y(– x) = – 2|(– x) – 1| = – 2|x + 1| ≠ y(x).

Do đó hàm số không chẵn cũng không lẻ.

+) y(– x) = (– x)3 – 5(– x) = - x3 + 5x = - (x3 – 5x) = – y(x).

Do đó hàm số là hàm số lẻ.    

+) yx=x2+2=x2+2=y(x).

Do đó hàm số là hàm số chẵn.                               

+) y(– x) =  – (– x) = x = – y(x).

Do đó hàm số là hàm lẻ.

Câu 8: Trong các hàm số sau, đồ thị của hàm số nhận đường thẳng x = 1 làm trục đối xứng là

A. y = – 2x2 + 4x + 1;

B. y = 2x2 + 4x + 3;

C. y = 2x2 – 2x + 1;

D. y = x2 – x + 5.

Hướng dẫn giải

Đáp án đúng là A

Ta có:

Hàm số bậc hai y = – 2x2 + 4x + 1 có a = – 2, b = 4, c = 1. Khi đó trục đối xứng là x = b2a=42.(2)=1.

Hàm số bậc hai y = 2x2 + 4x + 3 có a = 2, b = 4, c = 3. Khi đó trục đối xứng là x = b2a=42.2=1.

Hàm số bậc hai y = 2x2 – 2x + 1 có a = 2, b = – 2, c = 1. Khi đó trục đối xứng là x = b2a=22.2=12.

Hàm số bậc hai y = x2 – x + 5 có a = 1, b = –1, c = 5. Khi đó trục đối xứng là x = b2a=12.2=14.

Câu 9: Tập xác định D của hàm số fx=2x+2+xx là

A. D = [– 2; 2] \ {0};

B. D = [– 2; 2];             

C. D = (– 2; 2);                                               

D. D = ℝ.

Hướng dẫn giải

Đáp án đúng là A

Hàm số xác định khi và chỉ khi 2x02+x0x0x2x2x02x2,x0.

Do đó tập xác định của hàm số là: D = [– 2; 2] \ {0}.

Vậy đáp án đúng là A.

Câu 10: Cho hàm số y = (m – 2021)x + m – 2. Điều kiện để hàm số đồng biến trên  ℝ là

A. m < 2021;                         

B. m > 2021;                          

C. 2 < m < 2021;                   

D. m ≥ 2021.

Hướng dẫn giải

Đáp án đúng là B

Để hàm số y = (m – 2021)x + m – 2 đồng biến trên ℝ khi m – 2021 > 0 ⇔ m > 2021.

Vậy với m > 2021 thì hàm số đồng biến trên ℝ.

Câu 11: Cho tanα=13, với 0° < α < 90°. Giá trị của cosα bằng:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hướng dẫn giải

Đáp án đúng là C

Ta có: tan2α + 1 = 1cos2α

⇔ cos2α = 1tan2α+1

⇔ cos2α = 1132+1=910

⇔ cosα = 310=31010 (0° < α < 90°).

Vậy chọn đáp án C

Câu 12: Tính giá trị biểu thức sau: sin12° + sin178° + cos106° + cos74°

A. 2sin12°;                   

B. 2cos74°;                  

C. cos74°;                    

D. sin12°.

Hướng dẫn giải

Đáp án đúng là A

sin12° + sin178° + cos106° + cos74°

= sin12° + sin(180° – 12°) + cos(180° – 74°) + cos74°

= sin12° + sin12° – cos74° + cos74°

= 2.sin12°.

Câu 13: Cho tam giác ABC có AB = 2, BAC^=85° và ACB^=40°. Độ dài cạnh AC là:

A. 2,55;                        

B. 3,10;                        

C. 1,57;                        

D. 1,29.

Hướng dẫn giải

Đáp án đúng là A

Xét tam giác ABC, có: ABC^=180°85°40°=55° (định lí tổng ba góc trong tam giác)

Áp dụng định lí sin trong tam giác ABC, ta được:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 14: Cho bảng biến thiên sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Đồ thị hàm số bậc hai tương ứng với bảng biến thiên trên là :

A. y = x2 + 2x – 1;        

B. y = x2 – 2x + 2;        

C. y = 2x2 – 4x + 4;      

D. y = – 3x2 + 6x – 1.

Hướng dẫn giải

Đáp án đúng là C

Gọi hàm số bậc hai cần tìm là: y = ax2 + bx + c (với a, b, c ∈ ℝ, a ≠ 0)

Dựa vào bảng biến thiên ta thấy a > 0 nên đáp án D sai.

Ta có: xI = b2a=1 ⇔ b = – 2a. Do đó A sai.

Ta lại có: yI = Δ4a=2 ⇔ ∆ = – 8a ⇔ b2 – 4ac = – 8a ⇔ 4a2 – 4ac = – 8a ⇔ a – c = – 2 ⇔ c = a + 2

+) Nếu a = 1 thì b = – 2 và c = 3. Do đó B sai.

+) Nếu a = 2 thì b = – 4 và c = 4. Do đó C đúng.

Câu 15: Phát biểu nào sau đây là sai?

A. Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối của vectơ đó.

B. Vectơ là đoạn thẳng có hướng.

C. Hai vectơ cùng hướng thì cùng phương.

D. Hai vectơ cùng phương thì cùng hướng.

Hướng dẫn giải

Đáp án đúng là D

Hai vectơ cùng phương thì có thể cùng hướng hoặc ngược hướng. Do đó D là phát biểu sai.

Câu 16: Cho hình vuông ABCD. Hãy chọn khẳng định đúng.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hướng dẫn giải

Đáp án đúng là B

Ta có: AB,AD là hai vectơ không cùng phương dù chúng có cùng độ dài. Suy ra ABAD. Do đó A sai.

Ta có: AC=AB+AD (quy tắc hình bình hành). Do đó B đúng.

Nếu độ dài cạnh của hình vuông là a thì AB = a và BD=a2. Suy ra ABBD. Do đó C sai.

Hai vectơ AB và CD cùng phương cùng độ dài nhưng ngược hướng. Suy ra AB=CD. Do đó D sai.

Câu 17: Cho hình vẽ sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Trong các vectơ trên hình, có bao nhiêu vectơ cùng phương với vectơ MN?

A. 3;

B. 5;

C. 6;

D. 7.

Hướng dẫn giải

Đáp án đúng là D

Hai vec tơ cùng phương là hai vectơ có giá song song hoặc trùng nhau. Khi đó các vectơ cùng phương với vectơ MN là NM;  QK;  QP;  KP;  PK;  KQ;  PQ.

Vậy có tất cả 7 vectơ cùng phương với vectơ MN.

Câu 18: Để lắp đường dây cao thế từ vị trí A đến vị trí B phải tránh một ngọn núi, do đó người ta phải nối thẳng đường dây từ vị trí A đến vị trí C dài 9 km, rồi nối từ vị trí C đến B dài 12km. Biết góc tạo bởi 2 đoạn dây AC và CB là 52°. Hỏi so với việc nối thẳng từ A đến B phải tốn thêm bao nhiêu mét dây?

A. 9,6;                          

B. 11,4;                        

C. 92,0;                        

D. 71,0.

Hướng dẫn giải

Đáp án đúng là A

Áp dụng định lí cos vào tam giác ABC ta được:

AB2 = AC2 + CB2 – 2.AC.CB.cos52°

= 92 + 122 – 2.9.12.cos52°

≈ 92,0

⇔ AB ≈ 9,6 m.

So với việc nối thẳng từ A đến B phải tốn thêm số mét dây là: 9 + 12 – 9,6 ≈ 11,4 (m).

Câu 19: Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, BC. Chọn khẳng định đúng trong các khẳng định sau:

A. AB=CD;                         

B. AM=ON;

C. OC=OD;

D. AM=BN.

Hướng dẫn giải

Đáp án đúng là B

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

+) Ta có: AB và CD là hai vectơ cùng phương cùng độ dài nhưng ngược hướng. Do đó AB=CD. Suy ra A sai.

+) Xét tam giác ABC, có:

O là trung điểm của AC

N là trung điểm của BC

Suy ra ON là đường trung bình của tam giác ABC

Khi đó ON // AB và ON = 12AB = AM = MB.

Do đó AM=ON. Suy ra B đúng.

+) Ta có: OC và OD là hai vectơ có cùng độ dài nhưng không cùng hướng. Do đó OCOD. Suy ra C sai.

+) Ta có: OCOD và BN là hai vectơ không cùng độ dài và không cùng hướng. Do đó AMBN. Suy ra D sai.

Câu 20: Cho hình bình hành ABCD. Biểu thức DADB+DC bằng:

A. 0;                                      

B. 2DC;

C. 2DA;

D. 2DB.

Hướng dẫn giải

Đáp án đúng là A

Ta có: DADB+DC=BA+DC=0

Câu 21: Cho tam giác đều ABC nội tiếp đường tròn tâm O, bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ MA+MB+MC bằng:

A. 1;                                       

B. 6;                                       

C. 3;                                   

D. 3.

Hướng dẫn giải

Đáp án đúng là D

Vì ABC là tam giác đều nên O là trọng tâm tam giác ABC. Khi đó OA+OB+OC=0

Ta có: MA+MB+MC=MO+OA+MO+OB+MO+OC=3MO

MA+MB+MC=3MO

Ta lại có: M là điểm nằm trên đường tròn nên MO = 1.

MA+MB+MC=3.

Câu 22: Cho a¯ = 12,096384. Số gần đúng của a¯ với độ chính xác d = 0,0004 là:

A. 12,096;

B. 12,09638;

C. 12,0964;

D. 12,10.

Hướng dẫn giải

Đáp án đúng là C

Hàng của chữ số khác 0 đầu tiên của độ chính xác là hàng phần chục nghìn. Quy tròn số a¯ đến hàng phần chục nghìn ta được số gần đúng của a¯ là: 12,0964.

Câu 23: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của các cạnh BC và CD. Đặt a=AMc=AN . Hãy phân tích vectơ AC theo 2 vectơ a và b:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hướng dẫn giải

Đáp án đúng là D

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 24: Cho số gần đúng là a = 1,2357 với độ chính xác là d = 0,01. Số quy tròn của số a là: 

A. 1,24;

B. 1,2;

C. 1,236;

D. 1.

Hướng dẫn giải

Đáp án đúng là B

Hàng lớn nhất của độ chính xác là hàng phần trăm thì ta cần làm tròn đến hàng phần mười. Khi đó ta có số quy tròn của số gần đúng a là 1,2.

Câu 25: Cho hình thoi ABCD có cạnh bằng 4. ABC^=120°. Tính AC.AD:

A. 8;

B. 16;

C. 24;

D. 32.

Hướng dẫn giải

Đáp án đúng là C

Ta có hình vẽ sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Vì ABCD là hình thoi nên AC ⊥ BD tại O

⇒ ABO^=12ABC^=12.120°=60° (tính chất hình thoi)

Xét tam giác ABC vuông tại O, có:

AO = sinABO^.AB = sin60°.4 = 32.4=23.

⇒ AC = 2.AO = 2.2343.

Ta có: BAD^=60°DAC^=30°

Khi đó: AC.AD=AC.AD.cosAC;AD=43.4.cos30°=24.

Câu 26: Cho hình thang vuông ABCD có A^=D^=90°. Tính AB.AD:

A. 0;

B.32;

C. 12;

D. 1.

Câu 27: Cho mẩu tin sau:

Trong tháng 01/2021 có 47 dự án được cấp phép mới với số vốn đăng kí đạt gần 1,3 tỉ USD, giảm khoảng 81,8% về số dự án và 70,3% về số vốn đăng kí so với cùng kì năm trước; 46 lượt dự án đã cấp phép từ các năm trước đăng kí điều chỉnh vốn đầu tư với số vốn tăng thêm trên 0,5 tỉ USD, tăng gần 41,4%.

Trong các số liệu đã cho trong bài, số số gần đúng là:

A. 2;

B. 3;

C. 4;

D. 5.

Hướng dẫn giải

Đáp án đúng là D

Trong các số liệu đã cho trong bài, ta có:

- Các số đúng là: 47; 46.

- Các số gần đúng là: 1,3; 81,8%; 70,3%; 0,5; 41,4%.

Vậy có 5 số số gần đúng.

Câu 28: Cho tam giác ABC đều có cạnh bằng a, gọi H là trung điểm của cạnh BC. Độ dài của vectơ HA+AC bằng

A. a;                                       

B. a2;                                     

C.a32;                                 

D. a3.

Hướng dẫn giải

Đáp án đúng là B

Ta có: HA+AC=HC

Khi đó  HA+AC=HC=HC=12BC=a2.

Câu 29: Lớp 10A có 40 học sinh. Tỉ lệ số lượng mỗi loại học lực của học sinh lớp 10A được biểu diễn bằng biểu đồ sau:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hỏi số lượng học sinh khá của lớp 10A là:

A. 1;

B. 2;

C. 15;

D. 22.

Hướng dẫn giải

Đáp án đúng là C

Tỉ lệ học sinh khá trong lớp 10A là 37,5% nên số học sinh đạt học lực khá của lớp 10A là:

37,5%.40 = 15 (học sinh)

Vậy lớp 10A có 15 học sinh đạt học lực khá.

Câu 30: Một xạ thủ bắn súng 10 lần liên tiếp, số điểm của xạ thủ đạt được được ghi lại trong bảng sau:

Số lần

Lần 1

Lần 2

Lần 3

Lần 4

Lần 5

Lần 6

Lần 7

Lần 8

Lần 9

Lần 10

Số điểm

8

6

7

6

9

8

10

7

7

8

Số trung vị của số liệu trên là:

A. 6,5;

B. 7;

C. 8;

D. 7,5.

Hướng dẫn giải

Đáp án đúng là D

Sắp xếp dãy số liệu theo thứ tự không giảm ta được: 6; 6; 7; 7; 7; 8; 8; 8; 9; 10.

Dãy số liệu trên có 10 số liệu nên số trung vị là trung bình cộng của số liệu thứ 5 và 6: Q2 = 7+82=7,5.

Câu 31: Thực hiện đo chiều cao (đơn vị cm) của các bạn học sinh tổ 1 của lớp 10D và được ghi lại như sau: 154; 172; 164; 145; 160; 151; 152; 181. Chiều cao trung bình của các bạn tổ 1 là:

A. 155;

B. 160;

C. 170;

D. 150.

Hướng dẫn giải

Đáp án đúng là B

Chiều cao trung bình của tổ 1 là:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 32: Số huy chương vàng trong các giải thể thao quốc tế mà đoàn thể thao Việt Nam trong các giải đấu ở châu Á trong các năm từ 2010 đến 2019 được thống kê trong bảng sau:

Năm

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

Số huy chương

39

43

115

52

56

62

130

82

74

120

Độ lệch chuẩn của số liệu trên là:

A. 77,3;

B. 1002,61;

C. 31,664;

D. 91.

Hướng dẫn giải

Đáp án đúng là C

Số trung bình của số liệu trên là:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 33: Máy bay A bay với vận tốc a, máy bay B bay cùng hướng và có tốc độ chỉ bằng một nửa máy bay A. Biểu diễn vectơ vận tốc b của máy bay B theo vectơ vận tốc a của máy bay A là:

A. b=12a;

B. b=2a;

C. b=14a;

Db=a.

Hướng dẫn giải

Đáp án đúng là A

Vì vectơ vận tốc b của máy bay B cùng hướng theo vectơ vận tốc a của máy bay A và có độ lớn bằng một nửa vectơ a nên b=12a.

Câu 34: Khoảng đồng biến và nghịch biến của hàm số y = 2x+1là:

A. (– ∞; –1) và (–1; + ∞);

B. ℝ\{– 1};

C. (– ∞; –1);

D. (–1; + ∞).

Hướng dẫn giải

Đáp án đúng là A

Tập xác định D = ℝ\{– 1}

Lấy x1, x2 là hai số tùy ý thuộc (– ∞; –1) và (–1; + ∞) sao cho x1 < x2 ta có:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

+) Nếu x1, x2 ∈ (– ∞; –1) thì x1 + 1, x2 + 1 < 0 mà x2 – x1 > 0

Suy ra 2x2x1x1+1x2+1>0 nên f(x1) > f(x2).

Do đó hàm số đã đồng biến trên (– ∞; –1).

+) Nếu x1, x2 ∈ (–1; + ∞) thì x1 + 1, x2 + 1 > 0 mà x2 – x1 > 0

Suy ra 2x2x1x1+1x2+1>0 nên f(x1) > f(x2).

Do đó hàm số đã đồng biến trên (–1; + ∞).

Vậy hàm số đồng biến trên các khoảng (– ∞; –1) và (–1; + ∞).

Câu 35: Tứ giác ABCD có DB=kDC+DA. Khi đó tứ giác ABCD là hình:

A. hình thang;

B. hình bình hành;

C. hình vuông;

D. hình chữ nhật.

Hướng dẫn giải

Đáp án đúng là A

Ta có: DB=kDC+DA

⇔ DBDA=kDC

⇔ AB=kDC

Do đó AB và CD cùng phương nên AB // CD

Vì vậy ABCD là hình thang.

II. PHẦN TỰ LUẬN (3 ĐIỂM)

Câu 1 (1 điểm).

Cho hình chữ nhật ABCD, M là một điểm bất kì. Chứng minh: MA+MC=MB+MD.

Hướng dẫn giải

Đáp án đúng là

Gọi O là giao điểm của hai đường chéo AC và BD. Khi đó O là trung điểm của AC và BD. Do đó: OA+OC=0 và OB+OD=0

Ta có:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Câu 2 (0,5 điểm). Cho tam giác ABC có AB=a,AC=a3 và BAC^=30°. Gọi I là điểm thỏa mãn IB+2IC=0. Tính độ dài đoạn thẳng AI

Hướng dẫn giải

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Xét tam giác ABC, có:

IB+2IC=0 nên I thuộc vào đoạn thẳng BC và thỏa mãn IC = 2IB.

Áp dụng định lí cos trong tam giác ABC, ta được:

BC2 = AB2 + AC2 – 2AB.AC.cosA = a2+a322.a.a3.cos30°=a2

⇒ BC = a

⇒ AB = BC = a

⇒ Tam giác ABC cân tại B

⇒ C^=A^=30°

Ta lại có IC = 2IB nên IC = 23a, IB = 13a

Xét tam giác IAC có:

Áp dụng định lí cos, ta được:

IA2 = AC2 + IC2 – 2.AC.IC.cosC^

a32+23a22.a3.23acos30°=139a2

⇔ IA = 133a.

Vậy IA = 133a.

Câu 3 (1 điểm). Cổng chào Yên Lạc có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m. Trên thành cổng, tại vị trí có độ cao 43m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với đất). Vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn 10 m. Giả sử các số liệu trên là chính xác. Hãy tính độ cao của cổng (tính từ mặt đất đến điểm cao nhất của cổng).

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

Hướng dẫn giải

Vì cổng có hình dạng parabol nên có phương trình y = ax2 + bx + c (a ≠ 0) (1)

Đặt hệ trục tọa độ như hình vẽ:

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án (4 đề)

 Ta có: A(– 81; 0) và B(81; 0) và M(– 71; 43)

Thay lần lượt tọa độ các điểm vào (1) ta được:

0 = a.(– 81)2 + b(– 81) + c ⇔ 6 561a – 81b + c = 0 (2)

0 = a.812 + b.81 + c ⇔ 6 561a + 81b + c = 0 (3)

43 = a.(– 71)2 + b(– 71) + c ⇔ 5 041 a – 71b + c = 43 (4)

Lấy vế với vế của phương trình (2) trừ (3) ta được: – 162b = 0 ⇔ b = 0.

Khi đó:

(2) ⇔ 6 561a + c = 0

(4) ⇔ 5 041 a + c = 43

Từ đó ta có hệ phương trình: 6  561a+c=05  041a+c=43a0,03c185,6

Suy ra ta có phương trình: y = – 0,03x2 + 185,6.

Điểm H thuộc vào trục Oy nên xH = 0 ⇒ yH = – 0,03.02 + 185,6 = 185,6.

Vì vậy chiều cao của cổng chính là đoạn OH và bằng 185,6 m.

Câu 4 (0,5 điểm). Nam đo được đường kính của một hình tròn là 24 ± 0,2 cm. Nam tính được chu vi đường tròn là C = 75,36. Hãy ước lượng sai số tuyệt đối của C, biết 3,141 < π < 3,142.

Hướng dẫn giải

Gọi d¯ và C¯ lần lượt là đường kính và chu vi của đường tròn.

Ta có: 24 – 0,2 ≤ d¯ ≤ 24 + 0,2 hay 23,8 ≤ d¯ ≤ 24,2

Suy ra 3,141.23,8 ≤ d¯.π ≤ 24,2.3,42 ⇔ 74,7558 ≤ C¯ ≤ 76,0364

⇔ 74,7558 – 75,36 ≤ C¯ – 75,36 ≤ 76,0364 – 75,36

⇔ – 0,6042 ≤ C¯ – 75,36 ≤ 0,6764.

Vậy sai số tuyệt đối của C nằm trong khoảng từ – 0,6042 đển 0,6764.

Đề thi Học kì 1 Toán lớp 10 Chân trời sáng tạo có đáp án năm 2024 - 2025 - Đề 4

Phòng Giáo dục và Đào tạo .....

Đề thi Học kì 1 - Chân trời sáng tạo

Năm học 2024 - 2025

Môn: Toán 10

Thời gian làm bài: 90 phút

(Đề số 4)

Phần 1: Trắc nghiệm (30 câu – 6 điểm)

Câu 1: Trong các câu sau, có bao nhiêu câu là không phải là mệnh đề?

                 a) Huế là một thành phố của Việt Nam.

                 b) Sông Hương chảy ngang qua thành phố Huế.

                 c) Hãy trả lời câu hỏi này!

                 d) 5+19=24.

                 e) 6+81=25.

                 f) Bạn có mang theo máy tính không?

                 g) x+2=11.

                 A. 1.                                B. 2.                              C. 3.                              D. 4.

Câu 2: Hãy viết số quy tròn của số gần đúng a=17658 biết a¯=17658±16.

A. 17700.            B. 17800.                  C. 17500.                 D. 17600.

Câu 3: Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Đẳng thức nào sau đây sai?

A. OA+OB+OC+OD=0.                 B. AC=AB+AD.

C. |BA+BC|=|DA+DC|.           D. AB+CD=AB+CB.

Câu 4: Lớp 10E có 7 học sinh giỏi Toán, 5 học sinh giỏi Lý, 6 học sinh giỏi Hóa, 3 học sinh giỏi cả Toán và Lý, 4 học sinh giỏi cả Toán và Hóa, 2 học sinh giỏi cả Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10E là

A. 9.                            B. 10.                          C. 18.                          D. 28.

Câu 5: Miền nghiệm của bất phương trình: 3x+2(y+3)>4(x+1)y+3 là nửa mặt phẳng chứa điểm:

A. (3;0).                     B. (3;1). C. (2;1).         D. (0;0).

Câu 6: Phần không tô đậm trong hình vẽ dưới đây (không chứa biên), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?

Bộ 10 đề thi Học kì 1 Toán 10 Chân trời sáng tạo có đáp án năm 2024 (ảnh 1) 

A. {x2y0x+3y2.             B. {x2y>0x+3y<2.         C. {x2y0x+3y2.                    D. {x2y<0x+3y>2.

Câu 7: Tam giác ABC có AB=3,AC=6 và A^=60. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.

A. R=3.         B. R=33.  C. R=3.   D. R=6.

Câu 8: Hai chiếc tàu thủy cùng xuất phát từ một vị trí A, đi thẳng theo hai hướng tạo với nhau góc 600. Tàu B chạy với tốc độ 20 hải lí một giờ. Tàu C chạy với tốc độ 15 hải lí một giờ. Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí?

Bộ 10 đề thi Học kì 1 Toán 10 Chân trời sáng tạo có đáp án năm 2024 (ảnh 2)

     Kết quả gần nhất với số nào sau đây?

A. 61 hải lí.   

B. 36 hải lí.

C. 21 hải lí.

D. 18 hải lí.                                              

Câu 9: Tính giá trị biểu thức S=sin215+cos220+sin275+cos2110.

A. S=0.         B. S=1.              C. S=2.              D. S=4.

Câu 10: Cho hình vuông ABCD cạnh a. Tính P=AC.(CD+CA).

A. P=1.      B. P=3a2.    C. P=3a2. D. P=2a2.

Câu 11: Tìm tập xác định D của hàm số y=62x1x+1.

A. D=[1;3].         B. D=(1;3).          C. D=(1;3].                        D. D=[1;3].

Câu 12: Cho hàm số y=x3+10x+5. Điểm nào sau đây thuộc đồ thị hàm số:

A. (7;1).                      B. (5;2).                C. (4;1,1).                 D. (0;6).

Câu 13: Gọi G là trọng tâm của ΔABC. Đặt GA=a;GB=b. Xác định giá trị của m,n để BC=ma+nb.

     A. m=1,n=2      B. m=1,n=2                  C. m=2,n=1      D. m=2,n=1

Câu 14: Tam giác ABC có AC=4,BAC^=30,ACB^=75. Tính diện tích tam giác ABC.

A. SΔABC=8.                     B. SΔABC=43C. SΔABC=4.      D. SΔABC=83.

Câu 15: Hàm số y=ax2+bx+c(a>0) đồng biến trong khoảng nào sau đậy?

A. (;b2a).                                      B. (b2a;+).                    C. (Δ4a;+).                           D. (;Δ4a).

Câu 16: Sản lượng lúa của 40 thửa ruộng thí nghiệm có cùng diện tích được trình bày trong bảng tần số sau đây: (đơn vị: tạ)

Bộ 10 đề thi Học kì 1 Toán 10 Chân trời sáng tạo có đáp án năm 2024 (ảnh 3) 

Độ lệch chuẩn là

     A. 1,24                               B. 1,54                               C. 22,1                               D. 4,70

Câu 17: Cho tập hợp A={xN|x là ước chung của 36v\'a120}. Hãy liệt kê các phần tử của tập hợp A.

A. A={1;2;3;4;6;12}.                B. A={1;2;4;6;8;12}.

C. A={2;4;6;8;10;12}.              D. A={1;36;120}.

 Câu 18: Cho hai tập hợp A={0;1;2;3;4},B={1;3;4;6;8}. Mệnh đề nào sau đây đúng?

A. AB=B.        B. AB=A.        C. AB={0;2}.            D. BA={0;4}.

Câu 19: Điểm M(0;3) thuộc miền nghiệm của hệ bất phương trìnhnào sau đây?

A. {2xy33x+5y1. B. {2xy>33x+5y3.                             

C. {2xy>33x+5y8. D. {2xy33x+5y0.

Câu 20: Giá trị nhỏ nhất Fmin của biểu thức F(x;y)=yx trên miền xác định bởi hệ {y2x22yx4x+y5 là

A. Fmin=1.                         B. Fmin=2. C. Fmin=3.     D. Fmin=4.

Câu 21: Hàm số bậc hai nào sau đây có đồ thị là parabol có hoành độ đỉnh là 52và đi qua A(1;4)?

A. y=x25x+8.                                      B. y=2x2+10x16.

C. y=x25x.       D. y=2x2+5x+1.

Câu 22: Cho biết tanα=3. Giá trị của P=6sinα7cosα6cosα+7sinα bằng bao nhiêu?

A. P=43.                           B. P=53. C. P=43.     D. P=53.

Câu 23: Cho tam giác ABC. Trên cạnh BC lấy điểm D sao cho BD=13BC. Khi đó, vectơ AD bằng

     A. 23AB+13AC            B. 13AB+23AC     C. AB+23AC          D. 53AB13AC

Câu 24: Cho hai vecto a,b bất kỳ; k,hR. Khẳng định nào sau đây không đúng?

     A. 0.a=0                                                        B. k(a+b)=ka+kb C. k.0=0                                                D. h(ka)=(hk)a

Câu 25: Tam giác ABC vuông tại A có AB=6cm, BC=10cm. Tính bán kính r của đường tròn nội tiếp tam giác đã cho.

A. r=1 cm.        B. r=2 cm. C. r=2 cm.               D. r=3 cm.

Câu 26: Một miếng đất hình chữ nhật có chiều rộng x=43m±0,5m và chiều dài y=63m±0,5m. Tính chu vi P của miếng đất đã cho.

A. P=212m±4m.                             B. P=212m±2m.

C. P=212m±0,5m.                          D. P=212m±1m.

Câu 27: Khoảng biến thiên của mẫu số liệu 1  1  1  2  2  2  3  3  4  20 là:

     A. 1.                                   B. 3,9.                                C. 19.                                 D. 20.

Câu 28: Cho parabol y=ax2+bx+c có đồ thị như hình sau

 Bộ 10 đề thi Học kì 1 Toán 10 Chân trời sáng tạo có đáp án năm 2024 (ảnh 4)

Phương trình của parabol này là

A. y=x2+x1.                                     B. y=2x2+4x+1.       C. y=x22x1.                                   D. y=2x24x1.

Câu 29: Bảng biến thiên của hàm số y=x2+4x5 là:

A.           B. 

C.            D. 

Câu 30: Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng AB.BC.

A. AB.BC=a2. B. AB.BC=a232.            C. AB.BC=a22.                  D. AB.BC=a22.

Phần 2: Tự luận (3 điểm)

Câu 1: Kết quả dự báo nhiệt độ cao nhất trong 10 ngày liên tiếp ở Nghệ An cuối tháng 01 năm 2022 được

cho ở bảng sau:

Ngày

22

23

24

25

26

27

28

29

30

31

Nhiệt độ (oC)

23

25

26

27

27

27

27

21

19

18

  (Nguồn: https://nchmf.gov.vn)

a) Viết mẫu số liệu thống kê nhiệt độ nhận được từ bảng trên.

b) Tính số trung bình cộng, phương sai và độ lệch chuẩn của mẫu số liệu đó.

Câu 2: Cho tam giác ABC. Tìm tập hợp các điểm M thỏa mãn

a) |MB+MC|=|MBMC|

b) |2MA+3MB|=|3MB+2MC|

c) |4MA+MB+MC|=|2MAMBMC|

Câu 3:  Tìm parabol (P) y=ax2+bx+c biết (P) có đỉnh I(1;2) và giao với Oy tại điểm có tung độ bằng -1. Vẽ đồ thị hàm số tìm được. 

----- HẾT -----

HƯỚNG DẪN GIẢI CHI TIẾT

Phần 1: Trắc nghiệm (30 câu – 6 điểm)

1.B

2.D

3.C

4.B

5.C

6.C

7.C

8.B

9.B

10.D

11.A

12.A

13.A

14.B

15.C

16.B

17.C

18.A

19.C

20.C

21.D

22.D

23.A

24.D

25.A

26.C

27.A

28.C

29.B

30.C

Phần 2: Tự luận (4 điểm)

Câu 1 (VD):

a) Mẫu số liệu thống kê nhiệt độ nhận được từ bảng là:

23    25    26    27    27    27    27    21     19    18

b)

* Nhiệt độ trung bình của 10 ngày liên tiếp ở Nghệ An cuối tháng 01 năm 2022 là:

x¯=23+25+26+27+27+27+27+21+19+1810=24 (oC)

* Phương sai

s2=110(232+252+262+4.272+212+192+182)242=11,2

* Độ lệch chuẩn

s=11,23,35

Câu 2 (VD):

a) Gọi I là trung điểm BC ta có:

|MB+MC|=|MBMC||MI|=|CB|MI=BC2

Vậy tập hợp điểm M là đường tròn tâm I, bán kính R=BC2.

b) Gọi K là điểm thoả mān:

L là điểm thoả mān: 3LB+2LC=0

Ta có: |2MA+3MB|=|3MB+2MC|

|5MK|=|5ML|MK=ML

 Tập hợp điểm M là đường trung trực của đoạn thẳng KL.

c) Với I là trung điểm của BC. Gọi J là điểm thoả mān: 4JA+JB+JC=0

Ta có:

|4MA+MB+MC|=|2MAMBMC|

|6MJ|=|2MA2MI||6MJ|=|2IA|MJ=13IA= const

Vậy tập hợp điểm M là đường tròn tâm J bán kính R=13IA.

Câu 3 (VD):

Parabol (P) y=ax2+bx+c giao với Oy tại điểm có tọa độ (0;c), do đó c=1

(P) có hoành độ đỉnh xI=b2a=1b=2a

Điểm I(1;2) thuộc (P) nên a.12+b.11=2 hay a+b=1

Từ đó ta có hệ phương trình {a+b=1b=2a{b=2a=1

Vậy parabol cần tìm là y=x22x1

* Vẽ parabol

Đỉnh I(1;2)

Trục đối xứng x=1

Giao với Oy tại A(0;-1), lấy điểm B(2;-1) đối xứng với A qua trục đối xứng

Lấy điểm C(-1;2) và D(3;2) thuộc đồ thị.

 Bộ 10 đề thi Học kì 1 Toán 10 Chân trời sáng tạo có đáp án năm 2024 (ảnh 5)

Tài liệu có 115 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống