29 câu Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án 2024 - Toán lớp 8

Tải xuống 15 3.8 K 60

Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh bộ câu hỏi trắc nghiệm Toán lớp 8 Bài 8: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử chọn lọc, có đáp án. Tài liệu có 15 trang gồm 29 câu hỏi trắc nghiệm cực hay bám sát chương trình sgk Toán 8. Hi vọng với bộ câu hỏi trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án này sẽ giúp bạn ôn luyện trắc nghiệm để đạt kết quả cao trong bài thi môn Toán 8.

Giới thiệu về tài liệu:

- Số câu hỏi trắc nghiệm: 29 câu

- Lời giải & đáp án: có

Mời quí bạn đọc tải xuống để xem đầy đủ tài liệu Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án - Toán lớp 8:

Trắc nghiệm Toán 8 Bài 8 có đáp án: Phân tích đa thức thành nhân tử bằng nhóm hạng tử (ảnh 1)

Trắc nghiệm Toán 8

Bài 8: Phân tích đa thức thành nhân tử bằng bằng phương pháp nhóm hạng tử

Bài 1: Cho x2 + ax + x + a = (x + a)(…) Biểu thức thích hợp điền vào dấu … là

A. (x + 1)   

B. (x + a)    

C. (x + 2)    

D. (x – 1)

Lời giải

Ta có x2 + ax + x + a = (x2 + x) + (ax + a)

= x(x + 1) + a(x + 1) = (x + a)(x + 1)

Đáp án cần chọn là: A

Bài 2: Điền vào chỗ trống: 3x2 + 6xy2 – 3y2 + 6x2y = 3(…)(x + y)

A. (x + y + 2xy)

B. (x – y + 2xy)

C. (x – y + xy)

D. (x – y + 3xy)

Lời giải

3x2 + 6xy2 – 3y2 + 6x2y = (3x2 – 3y2) + (6xy2 + 6x2y)

= 3(x2 – y2) + 6xy(y + x) = 3(x – y)(x + y) + 6xy(x + y)

= [3(x – y) + 6xy](x + y) = 3(x – y + 2xy)(x + y)

Vậy chỗ trống là (x – y + 2xy)

Đáp án cần chọn là: B

Bài 3: Chọn câu đúng

A. x3 – 4x2 – 9x + 36 = (x + 3)(x – 2)(x + 2)

B. x3 – 4x2 – 9x + 36 = (x – 3)(x + 3)(x – 4)

C. x3 – 4x2 – 9x + 36 = (x – 9)(x – 2)(x + 2)

D. x3 – 4x2 – 9x + 36 = (x – 3)(x + 3)(x – 2)

Lời giải

Ta có x3 – 4x2 – 9x + 36

= (x3 – 4x2) – (9x – 36)

= x2(x – 4) – 9(x – 4) = (x2 – 9)(x – 4)

= (x – 3)(x + 3)(x – 4)

Đáp án cần chọn là: B

Bài 4: Chọn câu đúng

A. 2a2c2 – 2abc + bd – acd = (2ac – d)(ac – b)

B. 2a2c2 – 2abc + bd – acd = (2ac – d)(ac + b)

C. 2a2c2 – 2abc + bd – acd = (2ac + d)(ac – b)

D. 2a2c2 – 2abc + bd – acd = (2ac + d)(ac + b)

Lời giải

Ta có 2a2c2 – 2abc + bd – acd = 2ac(ac – b) + d(b – ac)

          = 2ac(ac – b) – d(ac – b) = (2ac – d)(ac – b)

Đáp án cần chọn là: A

Bài 5: Chọn câu sai

A. ax – bx + ab – x2 = (x + b)(a – x)

B. x2 – y2 + 4x + 4 = (x + y)(x – y + 4)

C. ax + ay – 3x – 3y = (a – 3)(x + y)

D. xy + 1 – x – y = (x – 1)(y – 1)

Lời giải

Ta có

ax – bx + ab – x2 = (ax – x2) + (ab – bx)

= x(a – x) + b(a – x) = (x + b)(a – x) nên A đúng

x2 – y2 + 4x + 4 = (x2 + 4x + 4) – y2

= (x + 2)2 – y2 = (x + 2 + y)(x + 2 – y) nên B sai

ax + ay – 3x – 3y = a(x + y) – 3(x + y)

= (a – 3)(x + y) nên C đúng

xy + 1 – x – y = (xy – x) + (1 – y)

= x(y – 1) – (y – 1) = (x – 1)(y – 1) nên D đúng

Đáp án cần chọn là: B

Bài 6: Tìm giá trị của x thỏa mãn x(2x – 7) – 4x + 14 = 0

Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án

Lời giải

Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án

Đáp án cần chọn là: C

Bài 7: Có bao nhiêu giá trị của x thỏa mãn x3 + 2x2 – 9x – 18 = 0

A. 1            

B. 2            

C. 0            

D. 3

Lời giải

Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án

Vậy x = -2; x = 3; x =-3

Đáp án cần chọn là: D

Bài 8: Có bao nhiêu giá trị của x thỏa mãn x(x – 1)(x + 1) + x2 – 1 = 0

A. 1            

B. 2            

C. 0            

D. 3

Lời giải

Ta có:

x(x – 1)(x + 1) + x2 – 1 = 0

⇔ x(x – 1)(x + 1) + (x2 – 1) = 0

⇔ x(x – 1)(x + 1) + (x – 1)(x + 1) = 0

⇔ (x + 1)(x – 1)(x + 1) = 0

⇔ (x + 1)2(x – 1) = 0

Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án

Vậy x = 1; x = -1

Đáp án cần chọn là: B

Bài 9: Cho |x| < 2. Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức A = x4 + 2x3 – 8x – 16

A. A > 1     

B. A > 0     

C. A < 0     

D. A ≥ 1

Lời giải

Ta có A = x4 + 2x3 – 8x – 16

= (x4 – 16) + (2x3 – 8x) = (x2 – 4)(x2 + 4) + 2x(x2 – 4)

= (x2 – 4)(x2 + 2x + 4)

Ta có x2 + 2x + 4 = x2 + 2x + 1 + 3 = (x + 1)2 + 3 ≥ 3 > 0, Ɐx

Mà |x| < 2 ⇔ x2 < 4 ⇔ x2 – 4 < 0

Suy ra A = (x2 – 4)(x2 + 2x + 4) < 0 khi |x| < 2

Đáp án cần chọn là: C

Bài 10: Cho x = 10 – y. Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức N = x3 + 3x2y + 3xy2 + y3 + x2 + 2xy + y2

A. N > 1200

B. N < 1000

C. N < 0     

D. N > 1000

Lời giải

Ta có

N = x3 + 3x2y + 3xy2 + y3 + x2 + 2xy + y2

= (x3 + 3x2y + 3xy2 + y3) + (x2 + 2xy + y2)

= (x + y)3 + (x + y)2 = (x + y)2(x + y + 1)

Từ đề bài x = 10 – y ⇔ x + y = 10. Thay x + y = 10 vào N = (x + y)2(x + y + 1) ta được

N = 102(10 + 1) = 1100

Suy ra N > 1000 khi x = 10 – y

Đáp án cần chọn là: D

Bài 11: Phân tích đa thức a4 + a3 + a3b + a2b thành nhân tử ta được

A. a2(a + b)(a + 1)                             

B. a(a + b)(a + 1)

C. (a2 + ab)(a + 1)                             

D. (a + b)(a + 1)

Lời giải

Ta có a4 + a3 + a3b + a2b

= (a4 + a3) + (a3 + a2b)

= a3(a + 1) + a2b(a + b)

= (a + 1)(a3 + a2b) = a2(a + b)(a + 1)

Đáp án cần chọn là: A

Bài 12: Phân tích đa thức thành nhân tử: 5x2 + 10xy – 4x – 8y

A. (5x – 2y)(x + 4y)                          

B. (5x + 4)(x – 2y)

C. (x + 2y)(5x – 4)                            

D. (5x – 4)(x – 2y)

Lời giải

5x2 + 10xy – 4x – 8y = (5x2 + 10xy) – (4x + 8y)

= 5x(x + 2y) – 4(x + 2y) = (5x – 4)(x + 2y)

Đáp án cần chọn là: C

Bài 13: Đa thức x2 + x – 2ax – 2a được phân tích thành

A. (x + 2a)(x – 1)

B. (x – 2a)(x + 1)

C. (x + 2a)(x + 1)

D. (x – 2a)(x – 1)

Lời giải

Ta có x2 + x – 2ax – 2a

= (x2 + x) – (2ax + 2a) = x(x + 1) – 2a(x + 1)

= (x – 2a)(x + 1)

Đáp án cần chọn là: B

Bài 14: Đa thức 2a2x – 5by – 5a2y + 2bx được phân tích thành

A. (a2 + b)(5x – 2y)                           

B. (a2 – b)(2x – 5y)

C. (a2 + b)(2x + 5y)                           

D. (a2 + b)(2x – 5y)

Lời giải

Ta có 2a2x – 5by – 5a2y + 2bx

= (2a2x – 5a2y) + (2bx – 5by)

= a2(2x – 5y) + b(2x – 5y)

= (a2 + b)(2x – 5y)

Đáp án cần chọn là: D

Bài 15: Cho 56x2 – 45y – 40xy + 63x = (7x – 5y)(mx + n) với m, n Є R. Tìm m và n

A. m = 8; n = 9

B. m = 9; n = 8

C. m = -8; n = 9

D. m = 8; n = -9

Lời giải

Ta có

56x2 – 45y – 40xy + 63x = (56x2 + 63x) – (45y + 40xy)

= 7x(8x + 9) – 5y(8x + 9)

Suy ra m = 8; n = 9

Đáp án cần chọn là: A

Bài 16: Cho ax2 – 5x2 – ax + 5x + a – 5 = (a + m)(x2 – x + n) với với m, n Є R. Tìm m và n

A. m = 5; n = -1

B. m = -5; n = -1

C. m = 5; n = 1

D. m = -5; n = 1

Lời giải

Ta có

ax2 – 5x2 – ax + 5x + a – 5 = x2(a – 5) – x(a – 5) + a – 5

= (a – 5)(x2 – x + 1)

Suy ra m = -5; n = 1

Đáp án cần chọn là: D

Bài 17: Cho x2 – 4y2 – 2x – 4y = (x + 2y)(x – 2y + m) với m Є R. Chọn câu đúng

A. m < 0     

B. 1 < m < 3

C. 2 < m < 4

D. m > 4

Lời giải

Ta có x2 – 4y2 – 2x – 4y

= (x2 – 4y2) – (2x + 4y)

= (x – 2y)(x + 2y) – 2(x + 2y)

= (x + 2y)(x – 2y – 2)

Suy ra m = -2

Đáp án cần chọn là: A

Bài 18: Cho x2 – 4xy + 4y2 – 4 = (x – my + 2)(x – 2y – 2) với m Є R. Chọn câu đúng

A. m < 0     

B. 1 < m < 3

C. 2 < m < 4

D. m > 4

Lời giải

Ta có

x2 – 4xy + 4y2 – 4 = (x2 – 2.x.2y + (2y)2) – 4

= (x – 2y)2 – 22 = (x – 2y – 2)(x – 2y + 2)

Suy ra m = 2

Đáp án cần chọn là: B

Bài 19: Tìm x biết x4 + 4x3 + 4x2 = 0

A. x = 2; x = -2

B. x = 0; x = 2

C. x = 0; x = -2

D. x = -2

Lời giải

Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án

Vậy x = 0; x = -2

Đáp án cần chọn là: C

Bài 20: Cho ab3c2 – a2b2c3 – a2bc3 = abc2(b + c)(…) Biểu thức thích hợp điền vào dấu … là

A. b – a      

B. a – b      

C. a + b      

D. -a – b

Lời giải

Ta có ab3c2 – a2b2c3 – a2bc3

= abc2(b2 – ab + bc – ac)

= abc2[(b2 – ab) + (bc – ac)]

= abc2[b(b – a) + c(b – a)]

= abc2(b + c)(b – a)

Vậy ta cần điền b – a

Đáp án cần chọn là: A

Bài 21: Tính nhanh: 37.7 + 7.63 – 8.3 – 3.2

A. 700        

B. 620        

C. 640        

D. 670

Lời giải

37.7 + 7.63 – 8.3 – 3.2 = (37.3 + 7.63) – (8.3 + 3.2)

= 7(37 + 63) – 3(8 + 2) = 7.100 – 3.10

= 700 – 30 = 670

Đáp án cần chọn là: D

Bài 22: Tính giá trị của biểu thức A = x2 – 5x + xy – 5y tại x = -5; y = -8

A. 130        

B. 120        

C. 140        

D. 150

Lời giải

A = x2 – 5x + xy – 5y = (x2 + xy) – (5x + 5y) = x(x + y) – 5(x + y)

= (x – 5)(x + y)

Tại x = -5; y = -8 ta có

A = (-5 – 5)(-5 – 8) = (-10)(-13) = 130

Đáp án cần chọn là: A

Bài 23: Tính giá trị của biểu thức A = (x – 1)(x – 2)(x – 3) + (x – 1)(x – 2) + x – 1 tại x = 5

A. A = 20   

B. A = 40   

C. A = 16   

D. A = 28

Lời giải

A = (x – 1)(x – 2)(x – 3) + (x – 1)(x – 2) + x – 1

⇔ A = (x – 1)(x – 2)(x – 3) + (x – 1)(x – 2) + (x – 1)

⇔ A = (x – 1)[(x – 2)(x – 3) + (x – 2) + 1]

⇔ A = (x – 1)[(x – 2)(x – 3 + 1) + 1]

⇔ A = (x – 1)[(x – 2)(x – 2) + 1]

⇔ A = (x – 1)[(x – 2)2 + 1]

Tại x = 5 ta có

A = (5 – 1)[(5 – 2)2 + 1] = 4.(32 + 1) = 4.(9 + 1) = 4.10 = 40

Vậy A = 40

Đáp án cần chọn là: B

Bài 24: Tính giá trị của biểu thức B = x6 – 2x4 + x3 + x2 – x khi x3 – x = 6

A. 36          

B. 42          

C. 48          

D. 56

Lời giải

B = x6 – 2x4 + x3 + x2 – x

⇔ B = x6 – x4 – x4 + x3 + x2 – x

⇔ B = (x6 – x4) – (x4 – x2) + (x3 – x)

⇔ B = x3(x3 – x) – x(x3 – x) + (x3 – x)

⇔ B = (x3 – x + 1)(x3 – x)

Tại x3 – x = 6, ta có B = (6 + 1).6 = 7.6 = 42

Đáp án cần chọn là: B

Bài 25: Với a3 + b3 + c3 = 3abc thì

A. a = b = c                             

B. a + b + c = 1    

C.a = b = c hoặc a + b + c = 0  

D. a = b = c hoặc a + b + c = 1

Lời giải

Từ đẳng thức đã cho suy ra a3 + b3 + c3 – 3abc = 0

b3 + c3 = (b + c)(b2 + c2 – bc)

= (b + c)[(b + c)2 – 3bc]

= (b + c)3 – 3bc(b + c)

⇒ a3 + b3 + c3 – 3abc = a3 + (b3 + c3) – 3abc

⇔ a3 + b3 + c3 – 3abc = a3 + (b3 + c3) – 3abc(b + c) – 3abc

⇔ a3 + (b3 + c3) – 3abc = (a + b + c)(a2 – a(b + c) + (b + c)2) – [3bc(b + c) + 3abc]

⇔ a3 + (b3 + c3) – 3abc = (a + b + c)(a2 – a(b + c) + (b + c)2) – 3bc(a + b + c)

⇔ a3 + (b3 + c3) – 3abc = (a + b + c)(a2 – a(b + c) + (b + c)2 – 3bc)

⇔ a3 + (b3 + c3) – 3abc = (a + b + c)(a2 – ab  - ac + b2 + 2bc + c2 – 3bc)

⇔ a3 + (b3 + c3) – 3abc = (a + b + c)(a2 + b2 + c2 – ab – ac – bc)

Do đó nếu a3 + (b3 + c3) – 3abc = 0 thì a + b + c  = 0 hoặc a2 + b2 + c2 – ab – ac – bc = 0

Mà a2 + b2 + c2 – ab – ac – bc = .[(a – b)2 + (a – c)2 + (b – c)2]

Nếu (a – b)2 + (a – c)2 + (b – c)2 = 0 ⇔ Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án  suy ra a = b = c

Vậy a3 + (b3 + c3) = 3abc thì a = b = c hoặc a + b + c = 0

Đáp án cần chọn là: C

Bài 26: Cho ab + bc + ca = 1. Khi đó (a2 + 1)(b2 + 1)(c2 + 1) bằng

A. (a + c + b)2(a + b)2              

B. (a + c)2(a + b)2(b +c)

C. (a + c)2 + (a + b)2 + (b + c)2   

D. (a + c)2(a + b)2(b + c)2

Lời giải

Vì ab + bc + ca = 1 nên

a2 + 1 = a2 + ab + bc + ca = a(a + b) + c(a + b) = (a + c)(a + b)

b2 + 1 = b2 + ab + bc + ca = b(a + b) + c(a + b) = (b + c)(a + b)

c2 + 1 = c2 + ab + bc + ca = (c2 + bc) + (ab + ac)

= c(c + b) + a(b + c) = (a + c)(b + c)

Từ đó suy ra (a2 + 1)(b2 + 1)(c2 + 1)

= (a + c)(a + b).(b + c)(a + b).(a + c)(b + c)

= (a + c)2(a + b)2(b + c)2

Vậy (a2 + 1)(b2 + 1)(c2 + 1) = (a + c)2(a + b)2(b + c)2

Đáp án cần chọn là: D

Bài 27: Chọn câu đúng

A. x(x + 1)4 + x(x + 1)3 + x(x + 1)2 + (x + 1)2 = (x + 1)5

B. x(x + 1)4 + x(x + 1)3 + x(x + 1)2 + (x + 1)2 = (x + 1)6

C. x(x + 1)4 + x(x + 1)3 + x(x + 1)2 + (x + 1)2 = (x + 1)4(x – 1)

D. x(x + 1)4 + x(x + 1)3 + x(x + 1)2 + (x + 1)2 = (x + 1)4(x + 2)

Lời giải

Ta có

x(x + 1)4 + x(x + 1)3 + x(x + 1)2 + (x + 1)2

= x(x + 1)4 + x(x + 1)3 + (x + 1)2(x + 1)

= x(x + 1)4 + x(x + 1)3 + (x + 1)3

= x(x + 1)4 + (x + 1)3(x + 1)

= x(x + 1)4 + (x + 1)4

= (x + 1)5

Đáp án cần chọn là: A

Bài 28: Có bao nhiêu cặp số nguyên (x; y) thỏa mãn xy = 2(x + y)

A. 6            

B. 4            

C. 2            

D. 5

Lời giải

Ta có xy = 2(x + y) ⇔ 2x + 2y – xy = 0

⇔ 2x – xy + 2y – 4 = -4

⇔ x(2 – y) + 2(y – 2) = -4

⇔ (x + 2)(2 – y) = -4     

⇔ (x + 2)(y – 2) = 4

Mà x; y Є Z ⇒ (x + 2); (y – 2) Є Ư(4) = {-1; 1; -2; 2; -4; 4}

Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án

Vậy có 6 cặp số (x; y) thỏa mãn điều kiện đề bài

Đáp án cần chọn là: A

Bài 29: Thu gọn đa thức A = (ax + by + cz)2 + (ay – bx)2 + (az – cx)2 + (bz – cy)2 ta được

A. (x2 + y2 + z2) + (a2 + b2 + c2)

B. (x2 + y2 + z2)(a2 + b2 + c2)

C. (x2 + y2 + z2)(a + b + c)2       

D. (x + y + z)(a2 + b2 + c2)

Lời giải

Ta có

A = (ax + by + cz)2 + (ay – bx)2 + (az – cx)2 + (bz – cy)2

= a2x2 + b2y2 + c2z2 + 2abxy + 2acxz + 2bcyz + a2y2 – 2abxy + b2x2 + a2z2 – 2acxz + c2z2 + b2z2 – 2bczy + c2y2

= a2x2 + b2y2 + c2z2 + a2y2 + b2x2 + a2z2 + c2x2 + b2z2 + c2y2

= (a2x2 + b2x2 + c2x2) + (b2y2 + a2y2 + c2y2) + (b2z2 + a2z2 + c2z2)

= x2(a2 + b2 + c2) + y2(a2 + b2 + c2) + z2(a2 + b2 + c2)

= (x2 + y2 + z2)(a2 + b2 + c2)

 Đáp án cần chọn là: B

Bài giảng Toán 8 Bài 8:Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử 

 

Tài liệu có 15 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống