Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập tài liệu Lý thuyết Toán lớp 8 Bài 11: Chia đa thức cho đơn thức, tài liệu bao gồm 3 trang, giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho bài kiểm tra sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.
Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây.
Lý thuyết Chia đa thức cho đơn thức
A. Lý thuyết
1. Đa thức chia cho đơn thức.
Với A là đa thức và B là đơn thức, B≠0. Ta nói A chia hết cho B nếu tìm được một biểu thức Q (Q có thể là đa thức hoặc đơn thức) sao cho A= B.Q.
Trong đó:
A là đa thức bị chia.
B là đơn thức chia.
Q là thương .
Kí hiệu: B= A : B hoặc
2. Quy tắc
Muốn chia đa thức A cho đơn thức B (trường hợp các hạng tử của đa thức A đều chia hết cho đơn thức B), ta chia mỗi hạng tử của A cho B rồi cộng các kết quả với nhau.
Chú ý: Trường hợp đa thức A có thể phân tích thành nhân tử, thường ta phân tích trước để rút gọn cho nhanh.
Ví dụ 1: Thực hiện phép tính
a, ( 12x4y3 + 8x3y2 - 4xy2 ):2xy.
b, ( - 2x5 + 6x2 - 4x3 ):2x2
Hướng dẫn:
a) Ta có: ( 12x4y3 + 8x3y2 - 4xy2 ):2xy = ( 12x4y3:2xy ) + ( 8x3y2:2xy ) - ( 4xy2:2xy )
= 6x4 - 1.y3 - 1 + 4x3 - 1.y2 - 1 - 2x1 - 1.y2 - 1 = 6x3y2 + 4x2y - 2y
b) Ta có: ( - 2x5 + 6x2 - 4x3 ):2x2 = ( - 2x5:2x2 ) + ( 6x2:2x2 ) - ( 4x3:2x2 )
= - x5 - 2 + 3x2 - 2 - 2x3 - 2 = - x3 - 2x + 3.
Bài 1: Thực hiện các phép tính sau:
a, ( 1/2a2x4 + 4/3ax3 - 2/3ax2 ):( - 2/3ax2 )
b, 4( 3/4x - 1 ) + ( 12x2 - 3x ):( - 3x ) - ( 2x + 1 )
Hướng dẫn:
a) Ta có: ( 1/2a2x4 + 4/3ax3 - 2/3ax2 ):( - 2/3ax2 )
= ( 1/2a2x4: - 2/3ax2 ) + ( 4/3ax3: - 2/3ax2 ) + ( - 2/3ax2: - 2/3ax2 )
= - 3/4ax2 - 2x + 1
b) Ta có 4( 3/4x - 1 ) + ( 12x2 - 3x ):( - 3x ) - ( 2x + 1 )
= 4( 3/4x - 1 ) + [ ( 12x2: - 3x ) + ( - 3x: - 3x ) ] - ( 2x + 1 )
= 4( 3/4x - 1 ) + ( - 4x + 1 ) - ( 2x + 1 ) = 3x - 4 + 1 - 4x - 2x - 1 = - 3x - 4
Bài 2: Tìm số tự nhiên n để đa thức A chia hết cho đơn thức B với:
A = 7xn - 1y5 - 5x3y4;
B = 5x2yn
Hướng dẫn:
Ta có A:B = ( 7xn - 1 y5 - 5x3y4 ):( 5x2yn ) = 7/5xn - 3 y5 - n - xy4 - n
Theo đề bài đa thức A chia hết cho đơn thức B
Vậy giá trị n cần tìm là n∈{3; 4}
Bài 3: Tìm đa thức A biết
a, A.6x4 = 24x9 - 30x8 + 1/2x5
b, A.( - 5/2x3y2 ) = 5x6y4 + 15/2x5y3 - 10x3y2
Hướng dẫn:
a) Ta có A.6x4 = 24x9 - 30x8 + 1/2x5 ⇒ A = ( 24x9 - 30x8 + 1/2x5 ):( 6x4 )
⇔ A = 24/6x9 - 4 - 30/6x8 - 4 + 1/12x5 - 4 = 4x5 - 5x4 + 1/12x
Vậy A = 4x5 - 5x4 + 1/12x.
b) Ta có A.( - 5/2x3y2 ) = 5x6y4 + 15/2x5y3 - 10x3y2
⇒ A = ( 5x6y4 + 15/2x5y3 - 10x3y2 ):( - 5/2x3y2 )
⇔ A = - 2x6 - 3y4 - 2 - 3x5 - 3y3 - 2 + 4x3 - 3y2 - 2
⇔ A = - 2x3y2 - 3x2y + 4.
Vậy A = - 2x3y2 - 3x2y + 4.