50 Bài tập Mệnh đề lớp 10 có lời giải chi tiết

Tải xuống 41 3.9 K 41

Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập tài liệu Chuyên đề Mệnh đề môn Toán lớp 10 có lời giải chi tiết, tài liệu bao gồm 41 trang giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kỳ thi môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.

Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:

Bài tập Mệnh đề

A. Bài tập Mệnh đề

A1. Bài tập tự luận

Bài 1. Cho tam giác ABC. Xét các mệnh đề:

P: “Tam giác ABC có 3 cạnh bằng nhau”.

Q: “Tam giác ABC là tam giác đều”.

Hai mệnh đề P và Q có tương đương không? Nếu có, phát biểu bằng nhiều cách?

Hướng dẫn giải

+ P  Q: “Nếu tam giác ABC có 3 cạnh bằng nhau thì tam giác ABC là tam giác đều”. Đây là mệnh đề đúng.

+ Q  P: “Nếu tam giác ABC là tam giác đều thì tam giác ABC có 3 cạnh bằng nhau”. Đây là mệnh đề đúng.

Do đó: P và Q là hai mệnh đề tương đương.

Ta phát biểu mệnh đề P  Q như sau:

+ “Tam giác ABC có 3 cạnh bằng nhau tương đương với tam giác ABC là tam giác đều”.

+ “Tam giác ABC có 3 cạnh bằng nhau khi và chỉ khi tam giác ABC là tam giác đều”.

+ “Tam giác ABC có 3 cạnh bằng nhau là điều kiện cần và đủ để có tam giác ABC là tam giác đều”.

Bài 2. Trong các phát biểu dưới đây, phát biểu nào là mệnh đề?

a) “Số 150 chia hết cho 3”;

b) “x + 3 = 0”;

c) “Sách giáo khoa Toán 10 Kết nối tri thức rất hay”;

d) “Tết nguyên đán là tết cổ truyền của người Việt Nam”

Hướng dẫn giải

a) “Số 150 chia hết cho 3” là một phát biểu đúng vì 150 : 3 = 50 nên đây là một mệnh đề.

b) “x + 3 = 0” là một phát biểu chưa thể khẳng định được tính đúng sai, phụ thuộc vào biến x nên đây không là một mệnh đề.

c) “Sách giáo khoa Toán 10 Kết nối tri thức rất hay” là một phát biểu không khẳng định được tính đúng sai (tùy thuộc vào ý kiến cá nhân của mỗi người) nên đây không là mệnh đề.

d) “Tết nguyên đán là tết cổ truyền của người Việt Nam” là một phát biểu đúng nên đây là một mệnh đề.

Bài 3. Phát biểu các mệnh đề sau và lập mệnh đề phủ định của nó dưới dạng kí hiệu:

a) P(x): “x,x20”.

b) Q(x): “x,x<0”.

Hướng dẫn giải

a)

+ Phát biểu mệnh đề P(x): “Mọi số nguyên đều có bình phương lớn hơn hoặc bằng 0”.

+ Phủ định của mệnh đề P(x) là Px¯: “x,x2<0”.

b)

+ Phát biểu mệnh đề Q(x): “Có một số nguyên nhỏ hơn 0”.

+ Phủ định của mệnh đề Q(x) là Qx¯: “x,x0”.

A2. Bài tập trắc nghiệm

I. Nhận biết

Câu 1. Cho hai mệnh đề  P: “x là số chẵn” và Q: “x chia hết cho 2”.

Phát biểu mệnh đề P kéo theo Q.

A. Hoặc x là số chẵn hoặc x chia hết cho 2;

B. Nếu x là số chẵn thì x chia hết cho 2;

C. Nếu x chia hết cho 2 thì x là số chẵn;

D. x là số chẵn và x chia hết cho 2.

Đáp án: B

Giải thích:

Vì mệnh đề kéo theo được phát biểu dưới dạng là “Nếu P thì Q”.

Nên mệnh đề P kéo theo Q là “Nếu x là số chẵn thì x chia hết cho 2”.

Câu 2. Cho mệnh đề: “x2 – 1 chia hết cho 24 khi và chỉ khi x là một số nguyên tố lớn hơn 3”.

Mệnh đề trên không thể viết lại thành mệnh đề nào sau đây?

A. “x2 – 1 chia hết cho 24 tương đương với x là một số nguyên tố lớn hơn 3”;

B. “x2 – 1 chia hết cho 24 là điều kiện cần và đủ để x là một số nguyên tố lớn hơn 3”;

C. “x2 – 1 chia hết cho 24 nếu và chỉ nếu x là một số nguyên tố lớn hơn 3”;

D. “x2 – 1 chia hết cho 24 là điều kiện đủ để x là một số nguyên tố lớn hơn 3”

Đáp án: D

Giải thích:

Xét mệnh đề: “x2 – 1 chia hết cho 24 khi và chỉ khi x là một số nguyên tố lớn hơn 3”.

Đặt:

P: “x2 – 1 chia hết cho 24”.

Q: “x là một số nguyên tố lớn hơn 3”.

Ta viết lại các mệnh đề ở đáp án như sau:

A. P tương đương với Q.

B. P là điều kiện cần và đủ để có Q.

C. P nếu và chỉ nếu Q.

D. P là điều kiện đủ để có Q.

Đối với mệnh đề P ⟺ Q, ta có thể phát biểu theo một số cách sau:

+ P tương đương Q;

+ P là điều kiện cần và đủ để có Q;

+ P nếu và chỉ nếu Q;

+ P khi và chỉ khi Q.

Ta thấy cách phát biểu ở câu D không nằm trong mấy cách phát biểu ở lý thuyết nên mệnh đề tương đương ở câu D sai.

Câu 3. Cho mệnh đề: “Nếu tứ giác là một hình thoi thì trong tứ giác đó nội tiếp được một đường tròn”.

Mệnh đề đảo của mệnh đề trên là:

A. “Tứ giác là một hình thoi khi và chỉ khi trong tứ giác đó nội tiếp được một đường tròn”;

B. “Trong một tứ giác nội tiếp được một đường tròn khi và chỉ khi tứ giác đó là hình thoi”;

C. “Nếu trong một tứ giác nội tiếp được một đường tròn thì tứ giác đó là hình thoi”;

D. “Tứ giác là một hình thoi kéo theo trong tứ giác đó nội tiếp được một đường tròn”.

Đáp án: C

Giải thích:

Xét mệnh đề “Nếu tứ giác là một hình thoi thì trong tứ giác đó nội tiếp được một đường tròn”, ta có:

P: “Tứ giác là một hình thoi”.

Q: “Trong tứ giác đó nội tiếp được một đường tròn”.

Mệnh đề đảo của mệnh đề P ⇒ Q là mệnh đề Q ⇒ P được phát biểu như sau:

“Nếu một tứ giác là hình vuông thì tứ giác đó cũng là hình thoi”.

Đối chiếu với các đáp án, ta thấy mệnh đề ở câu C là phù hợp nhất.

Câu 4. Tìm mệnh đề sai trong các mệnh đề sau:

A. Nếu n là số nguyên chẵn thì n2 là số nguyên chẵn;

B. Điều kiện cần và đủ để một số chia hết cho 5 là số đó phải có chữ số tận cùng là 0 hoặc 5;

C. Tổng 3 góc trong của một tam giác bằng 360°;

D. Tam giác có ba cạnh bằng nhau là tam giác đều.

Đáp án: C

Giải thích:

A. Giải sử n = 2k với k ∈ ℤ

⇒ n2 = (2k)2 = 4k2 = 2.2k2 chia hết cho 2 nên n2 là số chẵn.

Do đó mệnh đề trên đúng.

B. Mệnh đề trên đúng vì điều kiện cần và đủ để một số chia hết cho 5 là số đó phải có chữ số tận cùng là 0 hoặc 5.

Chẳng hạn số 10 có chữ số tận cùng là 0 hay số 15 có chữ số tận cùng là 5 sẽ chia hết cho 5.

C. Vì tổng 3 góc trong của một tam giác bằng 180° nên mệnh đề trên sai.

D. Mệnh đề trên đúng vì nếu một tam giác có ba cạnh bằng nhau thì đó là tam giác đều.

Câu 5. Phủ định của mệnh đề: “Có ít nhất một số tự nhiên có hai chữ số chia hết cho 11” là mệnh đề nào sau đây:

A. Mọi số tự nhiên có hai chữ số đều chia hết cho 11;

B. Có ít nhất một số tự nhiên có hai chữ số không chia hết cho 11;

C. Mọi số tự nhiên có hai chữ số đều không chia hết cho 11;

D. Có một số tự nhiên có hai chữ số chia hết cho 11.

Đáp án: C

Giải thích:

Ta có:

Phủ định của “có ít nhất” là “mọi”.

Phủ định của “chia hết” là “không chia hết”.

Vậy mệnh đề phủ định của mệnh đề đã cho là: “Mọi số tự nhiên có hai chữ số đều không chia hết cho 11”.

Câu 6. Cho mệnh đề: ∀x ∈ ℝ, x < 3 ⇒ x2 < 9.

Mệnh đề trên được phát biểu như thế nào?

A. Tồn tại số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;

B. Với mọi số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;

C. Không có số thực x nào mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;

D. Có duy nhất một số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9.

Đáp án: B

Giải thích:

Ta có mệnh đề ∀x ∈ ℝ, x < 3 ⇒ x2 < 9 được phát biểu như sau:

Với mọi số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9.

Đối chiếu với các đáp án, ta thấy phương án B là hợp lý nhất.

Câu 7. Cho các câu sau đây:

a) Không được vào đây!

b) Ngày mai bạn đi học không?

c) Chủ tịch Hồ Chí Minh sinh năm 1890.

d) 17 chia 3 dư 1.

e) 2003 không là số nguyên tố.

Có bao nhiêu câu là mệnh đề?

A. 2;

B. 1;

C. 3;

D. 4.

Đáp án: C

Giải thích:

a) Câu a) không phải là mệnh đề vì nó là câu cảm thán và không khẳng định tính đúng sai.

b) Câu b) không phải là mệnh đề vì nó là câu hỏi và không khẳng định tính đúng sai.

c) Câu c) là mệnh đề vì đó là câu khẳng định tính đúng sai.

d) Câu d) là mệnh đề vì đó là câu khẳng định tính đúng sai.

e) Câu e) là mệnh đề vì đó là câu khẳng định tính đúng sai.

Vậy có 3 câu là mệnh đề.

II. Thông hiểu

Câu 1. Câu nào sau đây không phải là mệnh đề chứa biến?

A. x2 + x – 1 > 0;

B. 4 < 5;

C. x là số tự nhiên;

D. x + 6 = 12.

Đáp án: B

Giải thích:

A. Câu trên là mệnh đề chứa biến vì câu trên phụ thuộc vào biến x.

B. Câu B là mệnh đề vì đó là câu khẳng định tính đúng sai.

Nên câu trên không phải là mệnh đề chứa biến.

C. Câu trên là mệnh đề chứa biến vì câu trên phụ thuộc vào biến và ta có tập D của các biến x để câu trên đúng hoặc sai.

D. Câu trên là mệnh đề chứa biến vì câu trên phụ thuộc vào biến và ta có tập D của các biến x để câu trên đúng hoặc sai.

Câu 2. Cho mệnh đề chứa biến P(x): x ∈ ℝ: x2 + 2 > 12. Mệnh đề nào sau đây đúng?

A. P(2);

B. P(1);

C. P(3);

D. P(4).

Đáp án: D

Giải thích:

Xét bất phương trình (*): x2 + 2 > 12.

A. Thay x = 2 vào phương trình (*) ta có: 22 + 2 = 6 > 12 (vô lý)

Suy ra mệnh đề trên sai.

B. Thay x = 1 vào phương trình (*) ta có: 12 + 2 = 3 > 12 (vô lý).

Suy ra mệnh đề trên sai.

C. Thay x = 3 vào phương trình (*) ta có: 32 + 2 = 11 > 12 (vô lý).

Suy ra mệnh đề trên sai.

D. Thay x = 4 vào phương trình (*) ta có: 42 + 2 = 18 > 12 (đúng).

Suy ra mệnh đề trên đúng.

Câu 3. Mệnh đề phủ định của mệnh đề “Có ít nhất một số thực x thỏa mãn điều kiện bình phương của nó là 1 số không dương” là:

A. ∀x ∈ ℝ: x2 > 0;

B. ∃x ∈ ℝ: x2 ≤ 0;

C. ∀x ∈ ℝ: x2 ≤ 0;

D. ∃x ∈ ℝ: x2 > 0.

Đáp án: A

Giải thích:

Theo giả thiết, ta có mệnh đề P: "∃x ∈ ℝ: x2 ≤ 0".

Ta có:

- Phủ định của ∃ phải là ∀.

- Phủ định của quan hệ ≤ là quan hệ >.

Vậy mệnh đề phủ định Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) của mệnh đề P là: ∀x ∈ ℝ: x2 > 0.

Câu 4. Cho mệnh đề sau: “Trong một mặt phẳng, nếu hai đường thẳng cùng song song với đường thẳng thứ 3 thì hai đường thẳng đó song song với nhau”.

Đáp án nào dưới đây là cách viết khác với mệnh đề đã cho?

A. Trong một mặt phẳng, hai đường thẳng cùng song song với đường thẳng thứ 3 là điều kiện cần để hai đường thẳng đó song song với nhau;

B. Trong một mặt phẳng, hai đường thẳng cùng song song với đường thẳng thứ 3 tương đương với để hai đường thẳng đó song song với nhau;

C. Trong một mặt phẳng, hai đường thẳng song song với nhau là điều kiện đủ để hai đường thẳng đó cùng song song với đường thẳng thứ 3;

D. Trong một mặt phẳng, hai đường thẳng cùng song song với đường thẳng thứ 3 là điều kiện đủ để hai đường thẳng đó song song với nhau.

Đáp án: D

Giải thích:

Xét mệnh đề “Trong một mặt phẳng, nếu hai đường thẳng cùng song song với đường thẳng thứ 3 thì hai đường thẳng đó song song với nhau” ta có:

P: “Trong một mặt phẳng, hai đường thẳng cùng song song với đường thẳng thứ 3”.

Q: “Hai đường thẳng đó song song với nhau”.

Ta thấy mệnh đề trên có dạng P ⇒ Q có thể được phát biểu dưới dạng điều kiện cần, điều kiện đủ như sau:

+ P là điều kiện đủ để có Q.

+ Q là điều kiện cần để có P.

Do đó định lý đã cho được phát biểu dưới dạng điều kiện cần, điều kiện đủ lần lượt là:

+ Trong một mặt phẳng, hai đường thẳng cùng song song với đường thẳng thứ 3 là điều kiện đủ để hai đường thẳng đó song song với nhau.

+ Trong một mặt phẳng, hai đường thẳng song song với nhau là điều kiện cần để hai đường thẳng đó cùng song song với đường thẳng thứ 3.

Đối chiếu với các đáp án trên, ta thấy mệnh đề ở đáp án D là một cách viết khác của mệnh đề đã cho.

Câu 5. Kí hiệu X là tập hợp tất cả các bạn học sinh x trong lớp 10A1, P(x) là mệnh đề chứa biến “x đạt học sinh giỏi”. Mệnh đề “∃x ∈ X, P(x)” khẳng định rằng:

A. Tất cả các bạn học sinh trong lớp 10A1 đều đạt học sinh giỏi;

B. Bất cứ ai đạt học sinh giỏi đều học lớp 10A1;

C. Có một số bạn học lớp 10A1 đạt học sinh giỏi;

D. Tất cả các bạn học sinh trong lớp 10A1 đều không đạt học sinh giỏi.

Đáp án: C

Giải thích:

Ta có mệnh đề “∃x ∈ X, P(x)” được phát biểu như sau:

“Có một số bạn học lớp 10A1 đạt học sinh giỏi”.

Đối chiếu các đáp án, ta thấy đáp án C là phù hợp nhất.

Câu 6. Mệnh đề nào dưới đây sai?

A. “Nếu (-3) > (-2) thì (-3)2 > (-2)2”;

B. “Nếu 3 là số lẻ thì 3 chia hết cho 2”;

C. “Nếu 15 chia hết cho 9 thì 18 chia hết cho 3”;

D. “Nếu 3 chia hết cho 1 và chính nó thì 3 là số nguyên tố”.

Đáp án: B

Giải thích:

Mệnh đề kéo theo “ P suy ra Q” chỉ sai khi P đúng Q sai.

A. Xét mệnh đề “Nếu (-3) > (-2) thì (-3)2 > (-2)2” có mệnh đề P : “(-3) > (-2)” là mệnh đề sai, mệnh đề Q : “(-3)2 > (-2)2” là mệnh đề đúng. Do đó mệnh đề kéo theo P ⇒ Q là mệnh đề đúng.

B. Xét mệnh đề “Nếu 3 là số lẻ thì 3 chia hết cho 2”;

Mệnh đề “3 là số lẻ” là đúng, tuy nhiên mệnh đề “3 chia hết cho 2” sai.

Theo lý thuyết “Mệnh đề P ⇒ Q sai khi P đúng và Q sai”

Nên mệnh đề ở câu B sai.

C. Xét mệnh đề “Nếu 15 chia hết cho 9 thì 18 chia hết cho 3”

Mệnh đề P: “15 chia hết cho 9” là sai.

Mệnh đề Q: “18 chia hết cho 3” là mệnh đề đúng.

Do đó mệnh đề C là mệnh đề đúng.

D. Xét mệnh đề: “Nếu 3 chia hết cho 1 và chính nó thì 3 là số nguyên tố”.

Mệnh đề P: “3 chia hết cho 1 và chính nó” là mệnh đề đúng;

Mệnh đề Q: “3 là số nguyên tố” là mệnh đề đúng.

Do đó mệnh đề P ⇒ Q đúng.

Câu 7. Cho mệnh đề sau:

Cho tứ giác ABCD, ta có các mệnh đề sau:

P: “x là số nguyên dương”.

Q: “x2 là số nguyên dương”.

Mệnh đề nào sau đây đúng?

A. P ⟺ Q;

B. Q ⇒ P;

C. P ⇒Q¯ ;

D. P ⇒ Q.

Đáp án: D

Giải thích:

A. Xét mệnh đề P ⟹ Q: “Nếu x là số nguyên dương thì x2 là số nguyên dương”.

Mệnh đề này đúng vì bình phương của một số nguyên dương là một số nguyên dương. (1)

Xét mệnh đề đảo Q ⇒ P: “Nếu x2 là số nguyên dương thì x là số nguyên dương”.

Mệnh đề này sai do nếu x2 là số nguyên dương thì x có thể là số thực dương hoặc số thực âm. (2)

Từ (1) và (2) nên mệnh đề ở đây A sai.

B. Mệnh đề Q ⇒ P được phát biểu như sau: “Nếu x2 là số nguyên dương thì x là số nguyên dương”.

Mệnh đề này sai do nếu x2 là số nguyên dương thì x có thể là số thực dương hoặc số thực âm.

C. Ta có mệnh đề Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1): “x2 không phải là số nguyên dương”.

Mệnh đề P ⇒ Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) được phát biểu như sau: “Nếu x là số nguyên dương thì x2 không phải là số nguyên dương”.

Vì với x nguyên dương thì xluôn luôn dương nên mệnh đề trên sai.

D. Mệnh đề P ⇒ Q được phát biểu như sau: “Nếu x là số nguyên dương thì x2 là số nguyên dương”.

Mệnh đề này đúng vì bình phương của một số nguyên dương là một số nguyên dương.

Câu 8. Cho mệnh đề sau: … x ∈ ℝ, 4x2 – 1 = 0.

Chỗ trống trong mệnh đề trên có thể điền kí hiệu nào dưới đây?

A. ∀;

B. ∃;

C. Cả hai kí hiệu ∀ và ∃ đều được;

D. Không có kí hiệu nào thỏa mãn.

Đáp án: B

Giải thích:

Ta có:

4x2 – 1 = 0 (*) ⟺ x2 = 14 ⟺ x = 12 hoặc x = 12

Ta thấy phương trình (*) có hai nghiệm phân biệt, hay nói cách khác phương trình (*) tồn tại hai giá trị của x là x = Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) và x =Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1)  thỏa mãn.

Vì vậy ta dùng kí hiệu ∃ cho mệnh đề trên.

III. Vận dụng

Câu 1. Cho mệnh đề P: "Tích 3 số tự nhiên liên tiếp chia hết cho 6"?

Xét tính đúng sai của mệnh đề trên và tìm mệnh đề phủ định của mệnh đề đó.

A. P đúng, Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1): "∀n ∈ ℕ, n(n + 1)(n + 2) ⋮ 6";

B. P sai, Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1): "∃n ∈ ℕ, n(n + 1)(n + 2) ⋮ 6";

C. P đúng, Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1): "∃n ∈ ℕ, n(n + 1)(n + 2) Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) 6";

D. P sai, https://vietjack.me/storage/uploads/images/1179/48-1657888172.png: "∀n ∈ ℕ, n(n + 1)(n + 2) Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) 6".

Đáp án: C

Giải thích:

Gọi 3 số tự nhiên liên tiếp n, n+1, n+2.

⇒ n(n+1)(n+2)

Với n = 2k ⇒ 2k(2k+1)(2k+2) chia hết 2

Với n = 2k+1 ⇒ (2k+1)(2k+2)(2k+3) = (2k+1).2(k+1)(2k+3) chia hết 2

⇒ n(n+1)(n+2) chia hết 2 (1)

Với n = 3k ⇒ 3k(3k+1)(3k+2) chia hết 3

Với n = 3k + 1 ⇒ (3k + 1)(3k + 2).3(k + 1) chia hết cho 3

Với n = 3k + 2 ⇒ (3k + 2)(3k + 3)(3k + 4) chia hết 3

⇒ n(n + 1)(n + 2) chia hết cho 3 (2)

Từ (1) và (2) ⇒ n(n + 1)(n + 2) chia hết cho 6.

Do đó mệnh đề P đúng.

Ta có:

"Tích 3 số tự nhiên liên tiếp chia hết cho 6"

⟺ P: "∀n ∈ ℕ, n(n + 1)(n + 2) ⋮ 6".

Ta lại có:

+ Phủ định của "∀" là "∃".

+ Phủ định của ⋮ là Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1).

Do đó mệnh đề của định của P là:

Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1): "∃n ∈ ℕ, n(n + 1)(n + 2) Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) 6".

Câu 2. Cho mệnh đề chứa biến P(x) = {x ∈ ℤ : |x2 – 2x – 3| = x2 + |2x + 3|}. Trong đoạn [-2020; 2021] có bao nhiêu giá trị của x để mệnh đề chứa biến P(x) là mệnh đề đúng?

A. 2020;

B. 2021;

C. 2022;

D. 2023.

Đáp án: A

Giải thích:

Số giá trị nguyên để mệnh đề P(x) là mệnh đề đúng chính là số nghiệm nguyên của phương trình |x2 – 2x – 3| = x2 + |2x + 3| (1).

+ Nếu x ≥ Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) thì ta có:

(1) ⟺ |x2 – 2x – 3| = x2 + |2x + 3| ⇔ Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) ⇔Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) .Mà x ∈ ℤ  và x ∈ [-2020; 2021]  nên x = 0 thỏa mãn.

+ Nếu x < Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) thì ta có (1) ⟺ |x2 – 2x – 3| = x2 – 2x – 3. Sử dụng định nghĩa giá trị tuyệt đối, kết hợp với điều kiện, ta có nghiệm của (1) trong trường hợp này:

(1) ⇔ Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) ⇔ Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1) ⇔ x < Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1)

Mà x ∈ [-2020;2021] nên  x ∈ {-2; -3; …; -2020}.

Do đó tập nghiệm của phương trình là S = {0; -2; -3; …; -2020}.

Vậy có 2020 số nguyên thỏa mãn yêu cầu bài toán.

Câu 3. Mệnh đề nào sau đây đúng?

A. "∀n ∈ ℕ, n(n + 1) là số chính phương";

B. "∀n ∈ ℕ, n(n + 1) là số lẻ";

C. "∃n ∈ ℕ, n(n + 1)(n + 2) là số lẻ";

D. "∀n ∈ ℕ, n(n + 1)(n + 2) chia hết cho 6".

Đáp án: D

Giải thích:

Ta có:

+ Với n = 1 ⇒ n(n + 1) = 2 không phải là số chính phương ⇒ A sai.

+ Với n = 1 ⇒ n(n + 1) = 2 là số chẵn ⇒ B sai.

Đặt P = n(n + 1)(n + 2)

TH1: n chẵn ⇒ P chẵn

TH2: n lẻ ⇒ (n + 1) chẵn ⇒ P chẵn

Vậy P chẵn ∀n ∈ ℕ ⇒ C sai.

Ta có một số chia hết cho 6 khi và chỉ khi số đó chia hết cho cả 2 và 3.

⟹ P ⋮ 6 ⟺ Trắc nghiệm Mệnh đề có đáp án - Toán lớp 10 Kết nối tri thức (ảnh 1)

(*) Ở trên ta đã chứng minh P luôn chẵn ⇒ P ⋮ 2

(**) P ⋮ 3

TH1: n ⋮ 3 ⇒ P ⋮ 3

TH2: n chia 3 dư 1 ⇒ (n + 2) ⋮ 3 ⇒ P ⋮ 3

TH3: n chia 3 dư 2 ⇒ (n + 1) ⋮ 3 ⇒ P ⋮ 3

Vậy P ⋮ 3, ∀n ∈ ℕ.

⇒ P ⋮ 6.

Do đó mệnh đề ở câu D đúng.

Câu 4. Mệnh đề nào sau đây đúng?

A. ∀n ∈ ℕ, n2 + 1 không chia hết cho 3;

B. ∀n ∈ ℝ, n < 3 ⇒ |n| < 3;

C. ∀n ∈ ℝ, (n – 1)2 ≠ n – 1;

D. ∃n ∈ ℕ, n2 + 1 chia hết cho 4.

Đáp án: A

Giải thích:

A. Với mọi số tự nhiên, ta có các trường hợp sau:

+ n = 3k ⇒ n2 + 1 = (3k)2 + 1 chia 3 dư 1.

+ n = 3k + 1 ⇒ n2 + 1 = (3k + 1)2 + 1 = 9k2 + 6k + 2 chia 3 dư 2.

+ n = 3k + 2 ⇒ n2 + 1 = (3k + 2)2 + 1 = 9k2 + 12k + 3 + 2 chia 3 dư 2.

Vậy mệnh đề “∀n ∈ ℕ, n2 + 1 không chia hết cho 3” là mệnh đề đúng.

B. Với n = -4 < 3, ta có |-4| = 4 > 3.

Do đó mệnh đề ở câu B sai.

C. Với n = 2 ta có:

(2 – 1)2 = 2 – 1 = 1.

Do đó mệnh đề ở câu C sai.

D. Với n = 1, ta có 12 + 1 = 2 không chia hết cho 4.

Do đó mệnh đề ở câu D sai.

Câu 5. Cho mệnh đề sau: “Nếu x là một số nguyên tố lớn hơn 3 thì x2 + 20 là một hợp số (tức là số có ước khác 1 và chính nó)”.

Đáp án nào dưới đây là cách viết khác với mệnh đề đã cho?

A. Điều kiện cần để x2 + 20 là một hợp số là x là số nguyên tố lớn hơn 3;

B. Điều kiện đủ để x2 + 20 là một hợp số là x là số nguyên tố lớn hơn 3;

C. Điều kiện cần và đủ để x2 + 20 là một hợp số là x là số nguyên tố lớn hơn 3;

D. Cả A và B đều đúng.

Đáp án: B

Giải thích:

Xét mệnh đề “Nếu x là một số nguyên tố lớn hơn 3 thì x2 + 20 là một hợp số” ta có:

P: “x là một số nguyên tố lớn hơn 3”.

Q: “x2 + 20 là một hợp số”.

Ta thấy mệnh đề trên có dạng P ⇒ Q có thể được phát biểu dưới dạng điều kiện cần, điều kiện đủ như sau:

+ Điều kiện cần để có P là Q.

+ Điều kiện đủ để có Q là P.

Do đó định lý đã cho được phát biểu dưới dạng điều kiện cần, điều kiện đủ lần lượt là:

+ Điều kiện cần để x là một số nguyên tố lớn hơn 3 là x2 + 20 là một hợp số.

+ Điều kiện đủ để x2 + 20 là một hợp số là x là một số nguyên tố lớn hơn 3.

Đối chiếu với các đáp án trên, ta thấy mệnh đề ở đáp án B là một cách viết khác của mệnh đề đã cho.

Câu 6. Cho mệnh đề A: “x,x2x+7<0”. Mệnh đề phủ định của A là:

A. A¯:"x,x2x+7>0";

B. A¯:"x,x2x+7>0";

C. A¯:"x,x2x+7<0";

D. A¯:"x,x2 x+70".

Hướng dẫn giải

Đáp án đúng là: D

Phủ định của  là 

Phủ định của < là ≥

Do đó phủ định của mệnh đề A: “x,x2x+7<0” là

A¯: “x,x2x+70”.

Câu 7. Trong các mệnh đề sau đây, mệnh đề nào có mệnh đề đảo là đúng?

A. Nếu a và b cùng chia hết cho c thì a + b chia hết cho c;

B. Nếu hai tam giác bằng nhau thì diện tích bằng nhau;

C. Nếu a chia hết cho 3 thì a chia hết cho 9;

D. Nếu một số tận cùng bằng 0 thì số đó chia hết cho 5.

Hướng dẫn giải

Đáp án đúng là: C

- Mệnh đề đảo của A là: Nếu a + b chia hết cho c thì a và b cùng chia hết cho c.

Chọn a = 5, b = 2, c = 7 thì a + b = 5 + 2 = 7 chia hết cho c = 7. Nhưng 2 không chia hết cho 7 và 5 cũng không chia hết cho 7. Do đó mệnh đề đảo của A sai.

- Mệnh đề đảo của B là: Nếu hai tam giác có diện tích bằng nhau thì hai tam giác đó bằng nhau.

Lý thuyết Mệnh đề – Toán lớp 10 Kết nối tri thức (ảnh 1)Hai tam giác ABC và MNP có cùng diện tích là 12 cm2. Tuy nhiên hai tam giác này không bằng nhau. Do đó mệnh đề đảo của B là sai.

- Mệnh đề đảo của C là: “Nếu a chia hết cho thì a chia hết cho 3” là mệnh đề đúng.

- Mệnh đề đảo của D là: “Nếu số đó chia hết cho 5 thì số đó có chữ số tận cùng là 0”. Ví dụ số 25 chia hết cho 5 nhưng số này có tận cùng là 5 chứ không phải 0. Do đó mệnh đề đảo của D sai.

Câu 8. Với giá trị thực nào của x mệnh đề chứa biến P(x): “2x2 – 1 < 0” là mệnh đề đúng

A. 0;

B. 5;

C. 1;

D. 45.

Hướng dẫn giải

Đáp án đúng là: A

Ta có:

P(0) = 2.02 – 1 < 0 hay -1 < 0 (đúng). Do đó với x = 0 ta được một mệnh đề đúng.

P(5) = 2.52 – 1 < 0 hay 49 < 0 (sai). Do đó với x = 5 ta được một mệnh đề sai.

P(1) = 2.12 – 1 < 0 hay 1 < 0 (sai). Do đó với x = 1 ta được một mệnh đề sai.

P(45) = 2.452 – 1 < 0 hay 725<0 (sai). Do đó với x = 45 ta được một mệnh đề sai.

B. Lý thuyết Mệnh đề

1. Mệnh đề, mệnh đề chứa biến

1.1. Mệnh đề

- Những khẳng định có tính đúng hoặc sai gọi là mệnh đề logic (gọi tắt là mệnh đề). Những câu không xác định được tính đúng sai không phải là mệnh đề.

- Mỗi mệnh đề phải hoặc đúng hoặc sai. Một mệnh đề không thể vừa đúng vừa sai.

Ví dụ 1:

Câu “Hoa hồng rất đẹp nhất trong các loài hoa” là câu khẳng định nhưng không xác định được tính đúng sai nên câu này không là mệnh đề.

Câu “Bây giờ là mấy giờ?” là một câu hỏi không xác định được tính đúng sai nên câu này không là mệnh đề.

Câu “8 + 1 > 9” là một câu khẳng định có thể xác định được tính đúng sai nên câu này là mệnh đề.

Câu “Số 1 tỉ là số rất lớn” là một câu khẳng định tuy nhiên câu này mang tính quan điểm cá nhân không xác định đước tính đúng sai nên không là mệnh đề.

Chú ý:

- Người ta thường sử dụng các chữ cái P, Q, R, … để biểu thị các mệnh đề.

- Những mệnh đề liên quan đến toán học được gọi là mệnh đề toán học.

- Những câu nghi vấn, câu cảm thán, câu cầu khiến không phải là mệnh đề.

Ví dụ 2:

+ “Hà Nội là thủ đô của Việt Nam” là một mệnh đề nhưng không phải mệnh đề toán học vì không phải sự kiện trong toán học.

+ “Số π là một số hữu tỉ” là mệnh đề toán học.

1.2. Mệnh đề chứa biến

- Mệnh đề chứa biến là một câu khẳng định chứa biến nhận giá trị trong một tập D nào đó mà với mỗi giá trị của biến thuộc vào D ta được một mệnh đề.

- Ta thường kí hiệu mệnh đề chứa biến n là P(n); mệnh đề chứa biến x, y là P(x, y), ….

Ví dụ:

+ “Với mọi giá trị thực của biến x, |x|  x”: không phải là mệnh đề chứa biến vì:

Ta có |x|  x với mọi giá trị thực của biến x nên đây là khẳng định đúng. Do đó phát biểu này là một mệnh đề không phải mệnh đề chứa biến.

+ “5n chia hết cho 2” là mệnh đề chứa biến.

Khi n = 4 thì mệnh đề này là mệnh đề đúng, khi n = 5 thì mệnh đề này là mệnh đề sai.

2. Mệnh đề phủ định

- Để phủ định một mệnh đề P, người ta thường thêm (hoặc bớt) từ “không” hoặc “không phải” vào trước vị ngữ của mệnh đề P. Ta kí hiệu mệnh đề phủ định của mệnh đề P là P¯.

- Mệnh đề P và mệnh đề P¯ là hai phát biểu trái ngược nhau. Nếu P đúng thì P¯ sai, còn nếu P sai thì P¯ đúng.

Ví dụ: “5 không chia hết cho 3” là mệnh đề phủ định của mệnh đề “5 chia hết cho 3”;

“3 là hợp số” là mệnh đề phủ định của mệnh đề “3 không là hợp số”.

3. Mệnh đề kéo theo, mệnh đề đảo

3.1. Mệnh đề kéo theo

- Mệnh đề “Nếu P thì Q” được gọi là mệnh đề kéo theo và kí hiệu là P  Q.

- Các định lí toán học là những mệnh đề đúng và thường có dạng P  Q. Khi đó ta nói:

P là giả thiết của định lí, Q là kết luận của định lí hoặc

“P là điều kiện đủ để có Q”, hoặc “Q là điều kiện cần để có P”.

Chú ý: Mệnh đề P  Q chỉ sai khi P đúng và Q sai. Do đó ta chỉ cần xét tính đúng sai của mệnh đề P  Q khi P đúng. Khi đó, nếu Q đúng thì P  Q đúng, nếu Q sai thì P  Q sai.

Ví dụ: Cho 2 mệnh đề: P: “9 chia hết cho 9”; Q: “9 chia hết cho 3”.

“Nếu 9 chia hết cho 9 thì 9 chia hết cho 3” là mệnh đề kéo theo của P và Q.

P là mệnh đề đúng và Q là mệnh đề đúng nên mệnh đề kéo theo P  Q là mệnh đề đúng.

3.2. Mệnh đề đảo

- Mệnh đề Q  P được gọi là mệnh đề đảo của mệnh đề  Q.

Nhận xét: Mệnh đề đảo của một mệnh đề đúng không nhất thiết là đúng.

Ví dụ: Cho 2 mệnh đề: P: “n = 0”; Q: “n là số nguyên”.

Mệnh đề kéo theo P  Q được phát biểu là: “Nếu n = 0 thì n là số nguyên”.

Mệnh đề đảo Q  P được phát biểu là “Nếu n là số nguyên thì n = 0”.

- Mệnh đề  Q là mệnh đề đúng còn mệnh đề Q  P không đúng.

4. Mệnh đề tương đương

- Mệnh đề “P nếu và chỉ nếu Q” được gọi là một mệnh đề tương đương và kí hiệu P  Q .

Nhận xét:

- Nếu cả hai mệnh đề Q  P và P  Q đều đúng thì hai mệnh đề tương đương P  Q đúng. Khi đó ta nói “P tương đương với Q” hoặc “P là điều kiện cần và đủ để có Q” hoặc “P khi và chỉ khi Q”.

Ví dụ: Cho 2 mệnh đề: P: “Tứ giác ABCD là hình bình hành”; Q: “Tứ giác ABCD có hai cặp cạnh đối song song”.

“Nếu tứ giác ABCD là hình bình hành thì tứ giác ABCD có hai cặp cạnh đối song song” là mệnh đề  Q.

“Nếu tứ giác ABCD có hai cặp cạnh đối song song thì tứ giác ABCD là hình bình hành” là mệnh đề  P.

Hai mệnh đề này đều đúng nên P và Q là hai mệnh đề tương đương.

Khi đó mệnh đề P  Q được phát biểu như sau: “Tứ giác ABCD là hình bình hành khi và chỉ khi tứ giác ABCD có hai cặp cạnh đối song song”.

5. Mệnh đề có chứa kí hiệu  và 

- Kí hiệu  đọc là “với mọi”.

- Kí hiệu  đọc là “có một” hoặc “tồn tại”.

- Cho mệnh đề “Px,xD”.

+ Phủ định của mệnh đề “xD,Px” là mệnh đề “xD,Px¯”.

+ Phủ định của mệnh đề “xD,Px” là mệnh đề “xD,Px¯”.

Chú ý: 

+ Phát biểu “Với mọi số tự nhiên n” có thể kí hiệu là n.

+ Phát biểu “Tồn tại số tự nhiên n” có thể kí hiệu là n.

Ví dụ:

Phủ định của mệnh đề “x,x2+1=0” là mệnh đề: “x,x2+10”.

Tài liệu có 41 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống