Từ đồ thị (H.1, H.2) hãy chỉ ra các khoảng tăng, giảm của hàm số y = cosx trên đoạn [(-π)/2; 3π/2] và các hàm số y = |x| trên khoảng (-∞; +∞)
- Hàm số y = cosx trên đoạn [(-π)/2; 3π/2]:
Các khoảng tăng: [(-π)/2,0], [π, 3π/2].
Các khoảng giảm: [0, π ],.
- Hàm số y = |x| trên khoảng (-∞; +∞)
Khoảng tăng: [0, +∞)
Khoảng giảm (-∞, 0].
Chứng minh rằng hàm số đồng biến trên khoảng (-1; 1), nghịch biến trên khoảng (-∞; -1) và (1; +∞).
Chứng minh rằng hàm số đồng biến trên khoảng (0; 1), nghịch biến trên khoảng (1; 2).
Khẳng định ngược lại với định lí trên có đúng không ? Nói cách khác, nếu hàm số đồng biến (nghịch biến) trên K thì đạo hàm của nó có nhất thiết phải dương (âm) trên đó hay không ?
Xét các hàm số sau và đồ thị của chúng:
y = -x2/2 (H.4a)
Xét dấu đạo hàm của mỗi hàm số và điền vào bảng tương ứng.