Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [30; 50]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng
A. .
B. .
C. .
Đáp án đúng là: A
Phương pháp giải:
Tính số phần tử của không gian mẫu , chính là số các số tự nhiên thuộc đoạn [30;50].
Gọi A là biến cố: chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục. Sử dụng phương pháp liệt kê xác định số phần tử của A là n(A).
Tính xác suất của biến cố A:
Bài giải chi tiết:
Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [30; 50], nên ta có số phần tử của không gian mẫu: n(Ω) = 50 – 30 + 1= 21.
Gọi A “Biến cố để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục”.
• TH1: Chữ số hàng chục là 3, có 6 cách chọn số tự nhiên có chữ số hàng đơn vị lớn hơn chữ số hàng chục là {34, 35, 36, 37, 38, 39}.
• TH2: Chữ số hàng chục là 4, có 5 cách chọn số tự nhiên có chữ số hàng đơn vị lớn hơn chữ số hàng chục là {45, 46, 47, 48, 49}.
Suy ra n(A) = 6 + 5 = 11.
Xác suất của biến cố A: P(A) = .
Tham khảo thêm một số tài liệu liên quan:
Biết F(x) và G(x) là hai nguyên hàm của hàm số f(x) trên ℝ và = F(2) – G(0) + a (a > 0). Gọi S là diện tích hình phẳng giới hạn bởi các đường y = F(x), y = G(x), x = 0 và x = 2. Khi S = 6 thì a bằng
Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, cạnh bên AA’ = 2a, góc giữa hai mặt phẳng (A’BC) và (ABC) bằng 60°. Thể tích của khối lăng trụ đã cho bằng
Trong không gian Oxyz, cho điểm A(2; 1; 1). Gọi (P) là mặt phẳng chứa trục Oy sao cho khoảng cách từ A đến (P) lớn nhất. Phương trình của (P) là
Cho khối chóp và khối lăng trụ có diện tích đáy, chiều cao tương ứng bằng nhau và có thể tích lần lượt là V1, V2. Tỉ số bằng
Cho hình lập phương ABCD.A’B’C’D’ (tham khảo hình vẽ bên dưới).
Giá trị sin của góc giữa đường thẳng AC’ và mặt phẳng (ABCD) bằng
Cho hình nón có góc ở đỉnh bằng 120° và chiều cao bằng 2. Gọi (S) là mặt cầu đi qua đỉnh và chứa đường tròn đáy của hình nón đã cho. Diện tích của (S) bằng
Cho hàm số bậc bốn y = f(x). Biết rằng hàm số g(x) = ln f(x) có bảng biến thiên như sau
Diện tích hình phẳng giới hạn bởi các đường y = f'(x) và y = g'(x) thuộc khoảng nào dưới đây?
Trong không gian Oxyz, cho điểm A(1; 2; 3). Phương trình của mặt cầu tâm A và tiếp xúc với mặt phẳng x – 2y + 2z + 3 = 0 là
Cho hàm số f(x) = (a + 3)x4 – 2ax2 + 1 với a là tham số thực. Nếu = f(2) thì bằng
Cho điểm M nằm ngoài mặt cầu S(O; R). Khẳng định nào dưới đây đúng?
Có bao nhiêu số nguyên dương của tham số m để hàm số y = |x4 – mx2 – 64x| có đúng 3 điểm cực trị?
Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên dưới.
Điểm cực tiểu của đồ thị hàm số đã cho có toạ độ là