Cho hàm số bậc ba y = f(x) có đồ thị là đường cong trong hình bên dưới.
Điểm cực tiểu của đồ thị hàm số đã cho có toạ độ là
A. (1; 3).
B. (3; 1).
C. (−1; −1).
Đáp án đúng là: C
Từ đồ thị hàm số bậc ba y = f(x), ta có điểm cực tiểu của đồ thị hàm số có toạ độ là (−1;−1).
Phương pháp giải:
Giả sử hàm số y = f(x) liên tục trên K = (xo - h; xo + h) và có đạo hàm trên K hoặc trên K \ {xo}, với h > 0 .
- Nếu f'(x) > 0 trên khoảng (xo - h; xo) và f'(x) < 0 trên (xo; xo + h) thì xo là một điểm cực đại của hàm số f(x).
- Nếu f'(x) < 0 trên khoảng (xo - h; xo) và f'(x) > 0 trên (xo; xo + h) thì xo là một điểm cực tiểu của hàm số f(x).
Minh họa bằng bảng biến thiến
* Chú ý.
- Nếu hàm số y = f(x) đạt cực đại (cực tiểu) tại xo thì xo được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f(xo) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là fCĐ(fCT) , còn điểm M(xo; f(xo)) được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.
- Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.
Bài tập liên quan:
Cho hàm số bậc ba y=f(x) có đồ thị là đường cong trong hình bên.
Giá trị cực đại của hàm số đã cho là
A. -1
B. 3
C. 2
D. 0
Cách giải:
Chọn B
Dựa vào đồ thị ta có giá trị cực đại của hàm số là 3.
Tham khảo thêm một số tài liệu liên quan:
Biết F(x) và G(x) là hai nguyên hàm của hàm số f(x) trên ℝ và = F(2) – G(0) + a (a > 0). Gọi S là diện tích hình phẳng giới hạn bởi các đường y = F(x), y = G(x), x = 0 và x = 2. Khi S = 6 thì a bằng
Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, cạnh bên AA’ = 2a, góc giữa hai mặt phẳng (A’BC) và (ABC) bằng 60°. Thể tích của khối lăng trụ đã cho bằng
Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [30; 50]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng
Trong không gian Oxyz, cho điểm A(2; 1; 1). Gọi (P) là mặt phẳng chứa trục Oy sao cho khoảng cách từ A đến (P) lớn nhất. Phương trình của (P) là
Cho khối chóp và khối lăng trụ có diện tích đáy, chiều cao tương ứng bằng nhau và có thể tích lần lượt là V1, V2. Tỉ số bằng
Cho hình lập phương ABCD.A’B’C’D’ (tham khảo hình vẽ bên dưới).
Giá trị sin của góc giữa đường thẳng AC’ và mặt phẳng (ABCD) bằng
Cho hình nón có góc ở đỉnh bằng 120° và chiều cao bằng 2. Gọi (S) là mặt cầu đi qua đỉnh và chứa đường tròn đáy của hình nón đã cho. Diện tích của (S) bằng
Cho hàm số bậc bốn y = f(x). Biết rằng hàm số g(x) = ln f(x) có bảng biến thiên như sau
Diện tích hình phẳng giới hạn bởi các đường y = f'(x) và y = g'(x) thuộc khoảng nào dưới đây?
Trong không gian Oxyz, cho điểm A(1; 2; 3). Phương trình của mặt cầu tâm A và tiếp xúc với mặt phẳng x – 2y + 2z + 3 = 0 là
Cho hàm số f(x) = (a + 3)x4 – 2ax2 + 1 với a là tham số thực. Nếu = f(2) thì bằng
Cho điểm M nằm ngoài mặt cầu S(O; R). Khẳng định nào dưới đây đúng?
Có bao nhiêu số nguyên dương của tham số m để hàm số y = |x4 – mx2 – 64x| có đúng 3 điểm cực trị?