Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.36

540

Với giải Bài 2.18 trang 49 Chuyên đề Toán 11 Kết nối tri thức chi tiết trong Bài 10: Bài toán tìm đường tối ưu trong một vài trường hợp đơn giản giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:

Giải Chuyên đề Toán 11 Bài 10: Bài toán tìm đường tối ưu trong một vài trường hợp đơn giản

Bài 2.18 trang 49 Chuyên đề Toán 11: Giải bài toán người đưa thư đối với đồ thị có trọng số trên Hình 2.36.

Bài 2.18 trang 49 Chuyên đề học tập Toán 11 Kết nối tri thức

Lời giải:

Đồ thị Hình 2.36 chỉ có hai đỉnh bậc lẻ là C và E nên ta có thể tìm được một đường đi Euler từ C đến E (đường đi này đi qua mỗi cạnh đúng một lần).

Một đường đi Euler từ đỉnh C đến đỉnh E là CABCEBDE và tổng độ dài của nó là

2 + 1 + 4 + 10 + 5 + 3 + 6 = 31.

Để quay trở lại điểm xuất phát và có đường đi ngắn nhất, ta cần tìm một đường đi ngắn nhất từ E đến C theo thuật toán gắn nhãn vĩnh viễn.

Đường đi ngắn nhất từ E đến C là EBAC và có độ dài là 5 + 1 + 2 = 8.

Vậy một chu trình cần tìm là CABCEBDEBAC và có độ dài là 31 + 8 = 39.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá