Chứng minh rằng không có đơn đồ thị với 12 đỉnh và 28 cạnh mà các đỉnh đều có bậc 3 hoặc 4

427

Với giải Luyện tập 4 trang 38 Chuyên đề Toán 11 Kết nối tri thức chi tiết trong Bài 8: Một vài khái niệm cơ bản giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:

Giải Chuyên đề Toán 11 Bài 8: Một vài khái niệm cơ bản

Luyện tập 4 trang 38 Chuyên đề Toán 11: Chứng minh rằng không có đơn đồ thị với 12 đỉnh và 28 cạnh mà các đỉnh đều có bậc 3 hoặc 4.

Lời giải:

Giả sử có đồ thị thỏa mãn yêu cầu bài toán. Gọi x là số đỉnh bậc 3 của đồ thị.

Khi đó, ta có số đỉnh bậc 4 là: 12 – x.

Tổng số bậc của các đỉnh là: 3x + 4(12 – x).

Vì đồ thị có 28 cạnh nên theo Định lí bắt tay thì đồ thị có tổng số bậc là 28 . 2 = 56.

Do đó, ta có phương trình 3x + 4(12 – x) = 56, tức là 8 + x = 0. Phương trình này không có nghiệm là số tự nhiên, do đó không tồn tại đồ thị thỏa mãn điều kiện đề bài.

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá