Hoạt động 3 trang 50 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

191

Với giải Hoạt động 3 trang 50 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 2: Cấp số cộng giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 2: Cấp số cộng

Hoạt động 3 trang 50 Toán 11 Tập 1: Cho cấp số cộng (un) có số dạng đầu u1, công sai d.

a) So sánh các tổng sau: u1 + un; u2 + un-1­; u3 + un-2; ...; un + u1.

b) Đặt Sn = u1 + u2 + u3 + ... + un. So sánh n(un + u1) với 2Sn.

Lời giải:

a) Ta có: u1 + un = u1 + u1 + (n – 1)d = 2u1 + (n – 1)d;

u2 + un-1­ = u1 + d + u1 + (n – 1 – 1)d = 2u1 + (n – 1)d;

u3 + un-2 = u1 + 2d + u1 + (n – 2 – 1)d = 2u1 + (n – 1)d;

...

un + u1 = u1 + (n – 1)d + u1 = 2u1 + (n – 1)d.

Ta thấy u1 + un = u2 + un-1­ = u3 + un-2 = ... = un + u1.

b) Ta có: 2Sn = 2.(u1 + u2 + u3 + ... + un) = (u1 + un) + (u2 + un-1) + ... + (un + u1)

= 2u1 + (n – 1)d + 2u1 + (n – 1)d + 2u1 + (n – 1)d + ... + 2u1 + (n – 1)d

= 2n.u1 + n(n – 1)d

= n(u1 + u1 + (n – 1)d)

= n(u1 + un).

 Lý thuyết Tổng n số hạng đầu của một cấp số cộng

Cho cấp số cộng (un)với công sai d. Đặt Sn=u1+u2+u3+...+un. Khi đó

Sn=n(u1+un)2=n2[2u1+(n1)d]

Đánh giá

0

0 đánh giá