Tìm số nguyên x, biết: 2x – 1 là bội của x – 3

509

Với giải Bài 69 trang 88 SBT Toán lớp 6 Cánh diều chi tiết trong Bài ôn tập cuối chương 2 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 6. Mời các bạn đón xem:

Giải SBT Toán lớp 6 Bài ôn tập cuối chương 2

Bài 69 trang 88 sách bài tập Toán lớp 6 Tập 1: Tìm số nguyên x, biết:

a) 2x – 1 là bội của x – 3;

b) 2x + 1 là ước của 3x + 2;

c) (x – 4)(x + 2) + 6 không là bội của 9;

d) 9 không là ước của (x – 2)(x + 5) + 11

Lời giải:

a) Ta có 2x – 1 là bội của x – 3 nên 2x – 1 chia hết cho x – 3.

Ta lại có 2x – 1 = 2x – 6 + 5 = 2(x – 1) + 5.

Vì 2(x – 1) chia hết cho x – 1 nên 5 phải chia hết cho x – 1 hay x – 1 thuộc Ư(5) = {1; -1; 2; -2}.

Suy ra x thuộc {2; 0; 3; -1}.

Vậy x ∈ {2; 0; 3; -1}.

b) Ta có 2x + 1 là ước của 3x + 2 nên 3x + 2 chia hết cho 2x + 1

Suy ra: 2(3x + 2) = 6x + 4 = 3(2x + 1) + 1 cũng chia hết cho 2x + 1

Mà 3(2x + 1) chia hết cho 2x + 1 nên 1 cũng phải chia hết cho 2x + 1 hay 2x + 1 thuộc Ư(1) = {1; -1}.

Suy ra x thuộc {0; -1}.

Vậy x ∈ {0; -1}.

c)

+) Nếu x chia hết cho 3 thì x có dạng x = 3k với . Khi đó:

(x – 4)(x + 2) + 6 = (3k – 4)(3k + 2) + 6 không chia hết cho 3 nên không là bội của 9.

+) Nếu x chia cho 3 thì x có dạng x = 3k + 1 với . Khi đó:

(x – 4)(x + 2) + 6 = (3k – 3)(3k + 3) + 6 = 9(k – 1)(k + 3) + 6.

Vì 9(k – 1)(k + 3) chia hết cho 9 mà 6 không chia hết cho 9 nên 9(k – 1)(k + 3) + 6 không chia hết cho 9 hay (x – 4)(x + 2) + 6 không là bội của 9.

+) Nếu x chia cho 3 dư 2 thì x có dạng x = 3k + 2 với . Khi đó:

(x – 4)(x + 2) + 6 = (3k – 2)(3k + 4) + 6 không chia hết cho 3 nên không là bội của 9.

Vậy (x – 4)(x + 2) + 6 không là bội của 9 với mọi x nguyên.

d)

+) Nếu x chia hết cho 3 thì x có dạng x = 3k với . Khi đó:

(x – 2)(x + 5) + 11 = (3k – 2)(3k + 5) + 11 không chia hết cho 3 nên không là bội của 9.

+) Nếu x chia cho 3 thì x có dạng x = 3k + 1 với . Khi đó:

(x – 2)(x + 5) + 6 = (3k – 1)(3k + 6) + 6 = 3(3k – 1)(k + 2) + 11.

Vì 3(3k – 1)(k + 2) chia hết cho 3 mà 11 không chia hết cho 3 nên 3(3k – 1)(k + 2) + 11 không chia hết cho 3 nên không là bội của 9.

+) Nếu x chia cho 3 dư 2 thì x có dạng x = 3k + 2 với . Khi đó:

(x – 2)(x + 5) + 11 = (3k – 4)(3k + 7) + 11 không chia hết cho 3 nên không là bội của 9.

Vậy (x – 4)(x + 2) + 6 không là bội của 9 với mọi x nguyên.

Từ khóa :
toán 6
Đánh giá

0

0 đánh giá