Tailieumoi.vn xin giới thiệu bộ đề thi giữa kì 1 môn Toán lớp 12 sách Chân trời sáng tạo năm 2024 - 2025. Tài liệu gồm 4 đề thi có ma trận chuẩn bám sát chương trình học và đáp án chi tiết, được biên soạn bởi đội ngũ giáo viên THPT dày dặn kinh nghiệm sẽ giúp các em ôn tập kiến thức và rèn luyện kĩ năng nhằm đạt điểm cao trong bài thi Giữa học kì 1 Toán 12. Mời các bạn cùng đón xem:
Đề thi giữa kì 1 Toán 12 Chân trời sáng tạo có đáp án năm 2024
Đề thi giữa kì 1 Toán 12 Chân trời sáng tạo có đáp án - Đề 1
Sở Giáo dục và Đào tạo ...
Đề thi Giữa kì 1 - Chân trời sáng tạo
Năm học 2024 - 2025
Môn: Toán lớp 12
Thời gian làm bài: phút
(Đề số 1)
Câu 1 : Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như hình vẽ. Mệnh đề nào sau đây đúng?
Hàm số đã cho đồng biến trên khoảng và
Hàm số đã cho nghịch biến trên khoảng
Hàm số đã cho đồng biến trên khoảng
Hàm số đã cho nghịch biến trên khoảng
Câu 2 : Đường cong trong hình vẽ bên dưới là đồ thị của hàm số nào sau đây?
Câu 3 : Cho hàm số y = f(x) có đồ thị như hình vẽ bên.
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn [-2;2]. Tính M + m.
-1
-2
0
-3
Câu 4 : Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây. Hỏi đồ thị của hàm số đã cho có bao nhiêu đường tiệm cận?
1
4
2
3
Câu 5 : Đường tiệm cận xiên của đồ thị hàm số là:
Câu 6 : Tọa độ tâm đối xứng của đồ thị hàm số là:
(-1;3)
(1;0)
(1;-1)
(0;1)
Câu 7 : Cho ba vecto không đồng phẳng. Trong các mệnh đề sau, mệnh đề nào sai?
Nếu không đồng phẳng thì từ ta suy ra m = n = p = 0
Nếu có , trong đó thì đồng phẳng
Với ba số thực m, n, p thỏa mãn ta có thì đồng phẳng
Nếu giá của đồng quy thì đồng phẳng
Câu 8 : Hình bên là đồ thị của hàm số f’(x). Hỏi hàm số y = f(x) đồng biến trên khoảng nào dưới đây?
và
Câu 9 : Đường cong hình bên là đồ thị của hàm số . Khẳng định nào sau đây đúng?
a > 0, b < 0, c > 0, d > 0
a > 0, b < 0, c < 0, d > 0
a > 0, b > 0, c < 0, d > 0
a < 0, b > 0, c > 0, d < 0
Câu 10 : Cho hàm số có bảng biến thiên như hình vẽ sau.
Xác định công thức của hàm số.
Câu 11 : Cho tứ diện hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M và N lần lượt là trung điểm của AD và SD. Số đo góc (MN,SC) bằng
Câu 12 : Cho hai vecto . Xác định góc giữa hai vecto khi .
Cho hàm số f(x) xác định trên R có đồ thị như sau:
a) Đồ thị hàm số đã cho có một 1 cực trị
b) Hàm số đã cho đồng biến trên R
c) Điểm (1;2) là tâm đối xứng của đồ thị hàm số y = f(x)
d) Đồ thị hàm số f(x) là
Cho đồ thị của hàm số f(x) như sau:
a) Đồ thị hàm số f(x) có tiệm cận đứng x = 0
b) Đồ thị hàm số nhận gốc tọa độ O làm tâm đối xứng
c) Hàm số f(x) nghịch biến trên mỗi khoảng và
d) Đồ thị hàm số f(x) có điểm cực đại (-3;-4) và điểm cực tiểu (1;4)
Cho tứ diện ABCD có các cạnh đều bằng a.
a)
b)
c)
d)
Trong không gian Oxyz, cho vecto , , và .
a)
b)
c)
d)
Gọi giá trị lớn nhất, giá trị nhỏ nhất của hàm số lần lượt là M, m. Tính .
Đáp án:
Với giá trị nào của tham số m để đồ thị hàm số có tiệm cận đứng đi qua điểm A(1;4)?
Đáp án:
Trong không gian Oxyz, cho hình hộp ABCD.A’B’C’D’ có A(1;0;1), B(2;1;2), D(1;-1;1), C’(4;5;-5). Tính tổng của hoành độ, tung độ, cao độ đỉnh A’.
Đáp án:
Một chất điểm chuyển động theo quy luật . Tính thời điểm t (giây) tại đó vận tốc v (m/s) của chuyển động tại giá trị lớn nhất.
Đáp án:
Có bao nhiêu giá trị nguyên của tham số m để hàm số không có cực trị?
Đáp án:
Cho hàm số y = f(x) có đồ thị như hình:
Phương trình có bao nhiêu nghiệm?
Đáp án:
ĐÁP ÁN
Phần I: Câu trắc nghiệm nhiều phương án lựa chọn.
1. B | 2. C | 3. B | 4. D | 5. C | 6. D |
7. D | 8. A | 9. B | 10. C | 11. C | 11. A |
a) Sai. Hàm số f(x) không có cực trị.
b) Đúng. Hàm số đã cho đồng biến trên R.
c) Đúng. Điểm (1;2) là tâm đối xứng của đồ thị hàm số y = f(x) vì nó là điểm uốn của đồ thị.
d) Sai. Đồ thị hàm số cắt trục tung tại điểm (0;-1), còn đồ thị trên hình vẽ cắt trục tung tại điểm (0;1).
a) Sai. Đồ thị hàm số f(x) có tiệm cận đứng x = -1.
b) Sai. Tâm đối xứng của đồ thị là điểm (-1;0).
c) Sai. Hàm số f(x) đồng biến trên mỗi khoảng và
d) Đúng. Đồ thị hàm số f(x) có điểm cực đại (-3;-4) và điểm cực tiểu (1;4) .
a) Đúng. .
b) Đúng. .
c) Sai. , .
d) Đúng. Giả sử I là trung điểm của CD thì , suy ra .
a) Sai. Vì .
b) Đúng. Vì .
c) Đúng. Vì
d) Sai. Đặt với .
Suy ra
Giải hệ trên ta được m = 2, n = 3, p = -1. Vậy .
Tập xác định: D = [-1;1].
Ta có:
.
; f(0) = 2.
Vậy .
Tiệm cận đứng của đồ thị hàm số là .
Tiệm cận đứng của đồ thị hàm số đi qua điểm A(1;4) nên .
Thử lại thấy thỏa mãn.
Theo quy tắc hình hộp, ta có: , suy ra .
Lại có: , , .
Do đó:
, suy ra . Tổng cần tìm là 3 + 5 + (-6) = 2.
Theo giả thiết: , .
Vận tốc của chuyển động là .
Ta có: .
Dựa vào bảng biến thiên, ta thấy vận tốc đạt giá trị lớn nhất khi t = 2.
Ta có: .
- Nếu m = 0 thì y’ = -2 < 0 nên hàm số không có cực trị. Ta chọn m = 0.
- Nếu , hàm số không có cực trị khi và chỉ khi y’ không đổi dấu.
Suy ra: (do ).
Kết luận, ta lấy m sao cho . Có 7 giá trị nguyên m thỏa mãn.
Vậy phương trình có 3 nghiệm phân biệt.
Đề thi giữa kì 1 Toán 12 Chân trời sáng tạo có đáp án - Đề 2
Sở Giáo dục và Đào tạo ...
Đề thi Giữa kì 1 - Chân trời sáng tạo
Năm học 2024 - 2025
Môn: Toán lớp 12
Thời gian làm bài: phút
(Đề số 2)
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Câu 1. Cho hàm số y = f(x) có bảng xét dấu đạo hàm y' như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
A. (-∞;3).
B. (-∞;7).
C. (3;7).
D. (3;+∞).
Câu 2. Cho hàm số y = f(x) có đồ thị như hình dưới đây.
Giá trị cực đại của hàm số đã cho bằng
A. 3.
B. 0.
C. 2.
D. -1.
Câu 3. Cho hàm số y = f(x) có đồ thị hàm số như hình vẽ dưới đây.
Giá trị nhỏ nhất của hàm số trên đoạn [0;4] bằng bao nhiêu?
A. -3.
B. 2.
C. 1.
D. 6.
Câu 4. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau:
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
A. 3.
B. 2.
C. 1.
D. 0.
Câu 5. Cho hàm số y = (với a,m ≠ 0) có đồ thị là đường cong như hình dưới đây.
Tiệm cận xiên của đồ thị hàm số là đường thẳng
A. y = x - 1.
B. y = x + 1.
C. y = -x - 1.
D. y = -x + 1.
Câu 6. Đồ thị hàm số y = -x3 - x + 2 là đường cong nào trong các đường cong sau?
A. .
B. .
C. .
D. .
Câu 7. Cho hình chóp tứ giác S.ABCD.
Trong các vectơ có điểm đầu và điểm cuối phân biệt thuộc tập hợp các đỉnh của hình chóp tứ giác, có bao nhiêu vectơ có giá nằm trong mặt phẳng (SCD)?
A. 3.
B. 2.
C. 6.
D. 0.
Câu 8. Cho hàm số . Phát biểu nào sau đây là đúng?
A. Hàm số đã cho đồng biến trên ℝ\{1}.
B. Hàm số đã cho nghịch biến trên ℝ\{1}.
C. Hàm số đã cho đồng biến trên các khoảng (-∞;1) và (1;+∞).
D. Hàm số đã cho nghịch biến trên các khoảng (-∞;1) và (1;+∞).
Câu 9. Trên đoạn [1;5], giá trị lớn nhất của hàm số bằng
A. 3.
B. 1.
C. 5.
D. 0.
Câu 10. Cho đồ thị hàm số (với c ≠ 0) có đồ thị như hình dưới đây.
Biết rằng a là số thực dương, hỏi trong các số b,c,d có bao nhiêu số dương?
A. 0.
B. 1.
C. 2.
D. 3.
Câu 11. Cho hàm số y = f(x) liên tục trên ℝ và có bảng biến thiên như sau:
Đồ thị của hàm số trên cắt trục hoành tại bao nhiêu điểm?
A. 1.
B. 2.
C. 3.
D. 4.
Câu 12. Cho hình lăng trụ ABC.A'B'C', M là trung điểm của BB'. Đặt , , . Khẳng định nào sau đây đúng?
A. .
B. .
C. .
D. .
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Câu 1. Cho hàm số y = f(x) có đồ thị như hình dưới đây.
a) Hàm số đã cho đồng biến trên khoảng (2;+∞).
b) Hàm số đã cho đạt cực đại tại x = 0; đạt cực tiểu tại x = 2.
c) Trên đoạn [0;2], giá trị lớn nhất của hàm số đã cho bằng 0.
d) Phương trình 3f(x) + 4 = 0 có 3 nghiệm.
Câu 2. Cho hàm số có đồ thị là (C).
a) Hàm số đã cho nghịch biến trên từng khoảng (-∞;1) và (-1;+∞).
b) Hàm số đã cho không có cực trị.
c) (C) có tiệm cận đứng là đường thẳng x = -1, tiệm cận ngang là đường thẳng y = 2.
d) Biết rằng trên (C) có 2 điểm phân biệt mà các tiếp tuyến của (C) tại các điểm đó song song với đường thẳng y = x. Gọi k là tổng hoành độ của hai điểm đó, khi đó k là một số chính phương.
Câu 3. Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AD = 1 và AA' = 2.
a) .
b) .
c) .
d) .
Câu 4. Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của AB và CD, G là trung điểm của IJ (tham khảo hình vẽ).
a) .
b) .
c) .
d) nhỏ nhất khi M ≡ G.
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Câu 1. Cho hàm số y = f(x) có đạo hàm trên ℝ. Biết hàm số y = f'(x) có đồ thị như hình vẽ dưới đây.
Hàm số g(x) = f(x) + x đạt cực tiểu tại điểm x bằng bao nhiêu?
Câu 2. Cho hàm số , gọi là giá trị lớn nhất của hàm số đã cho trên đoạn [-5;-2]. Giá trị của biểu thức P = a + b bằng bao nhiêu?
Câu 3. Cho hình lăng trụ tam giác đều ABC.A'B'C' có AB = a và . Số đo góc giữa hai vectơ và bằng bao nhiêu độ?
Câu 4. Một doanh nghiệp sản xuất một loại sản phẩm. Giả sử tổng chi phí (đơn vị: triệu đồng) để sản xuất và bán hết x sản phẩm đó được cho bởi:
f(x) = 0,0001x2 + 0,2x + 10 000 (x ≥ 1).
Tỉ số được gọi là chi phí trung bình cho một sản phẩm khi bán ra. Hãy cho biết doanh nghiệp cần sản xuất bao nhiêu sản phẩm để chi phí trung bình là nhỏ nhất.
Câu 5. Từ một tấm bìa mỏng hình vuông cạnh 6 dm, bạn Nhi cắt bỏ bốn tam giác cân bằng nhau có cạnh đáy là cạnh của hình vuông ban đầu và đỉnh là đỉnh của một hình vuông nhỏ phía trong rồi gập lên, ghép lại tạo thành một khối chóp tứ giác đều như hình sau.
Thể tích của khối chóp có giá trị lớn nhất bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng phần mười)?
Câu 6. Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt có dạng hình hộp chữ nhật với đáy trên là hình chữ nhật ABCD, mặt phẳng (ABCD) song song với mặt phẳng nằm ngang. Khung sắt đó được buộc vào móc E của chiếc cần cẩu sao cho các đoạn dây cáp EA, EB, EC, ED có độ dài bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc bằng 60°. Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng.
Trọng lượng của chiếc xe ô bằng bao nhiêu Newton (làm tròn kết quả đến hàng đơn vị)? Biết rằng các lực căng đều có cường độ là 4 500 N và trọng lượng của khung sắt là 2 700 N.
----------HẾT----------