20 Bài tập Phép cộng và phép trừ số nguyên lớp 6 (sách mới) có đáp án

377

Tailieumoi.vn xin giới thiệu Bài tập Toán lớp 6 Phép cộng và phép trừ số nguyên, được sưu tầm và biên soạn theo chương trình học của 3 bộ sách mới. Bài viết gồm 20 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 6. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Phép cộng và phép trừ số nguyên. Mời các bạn đón xem:

Bài tập Toán 6 Phép cộng và phép trừ số nguyên

A. Bài tập Phép cộng và phép trừ số nguyên

Bài 1. Nhiệt độ bên ngoài của một máy bay khi bay ở độ cao 1000 m là – 320C. Khi hạ cánh, nhiệt độ ở sân bay là 350C. Hỏi nhiệt độ của máy bay khi ở độ cao 1 000m và khi hạ cánh chênh lệch bao nhiêu độ C?

Lời giải

Nhiệt độ của máy bay khi ở độ cao 1 000m và khi hạ cánh chênh lệch:

35 – (-32) = 670C.

Vậy nhiệt độ của máy bay khi ở độ cao 1 000m và khi hạ cánh chênh lệch 670C.

Bài 2. Tính:

a) (-7) + (-14) + (-6);

b) 9 + (-3) + (-10);

c) 152 + (-73) – (-18) – 127.

Lời giải

a) (-7) + (-14) + (-6)

= (-7) + [(-14) + (-6)]

= (-7) + (-20) 

= -27

b) 9 + (-3) + (-10)

= [9 + (-3)] + (-10)

= 6 + (-10) 

= - (10 – 6) 

= - 4

c) 152 + (-73) – (-18) – 127

= 152 + (-73) + 18 – 127

= [152 + (-73)] + [18 – 127]

= (152 – 73) + [18 + (-127)]

= 79 + [-(127 – 18)]

= 79 + (-109)

= - (109 – 79)

= - 30.

Bài 3. Thực hiện các phép tính sau:

a) 88 + 45;

b) (−48) + (−64);

c) 2 032 + (−2 032);

d) 47 + (−33).

Hướng dẫn giải

a) 88 + 45 = 133;

b) (−48) + (−64) = − (48 + 64) = − 112;

c) 2 032 + (−2 032) = 0;

d) 47 + (−33) = (47 – 33) = 14.

Bài 4: Tổng của số nguyên âm nhỏ nhất có ba chữ số và số nguyên dương nhỏ nhất có bốn chữ số là số là bao nhiêu?

Hướng dẫn giải

Số nguyên dương nhỏ nhất có bốn chữ số là: 1000.

Sô nguyên âm nhỏ nhất có ba chữ số là: − 999.

Tổng của số nguyên âm nhỏ nhất có ba chữ số và số nguyên dương nhỏ nhất có bốn chữ số là số là:

(−999) + 1000 = 1000 – 999 = 1.

Vậy tổng của số nguyên âm nhỏ nhất có ba chữ số và số nguyên dương nhỏ nhất có 4 chữ số là 1.

Bài 5: Một chiếc máy bay cất cánh từ mặt đất bay lên cao 7650m so với mặt đất. Do thời tiết xấu nên máy bay bay cao hơn 2357m và sau một thời gian nó lại hạ xuống 1320m. Hỏi sau hai lần thay đổi, máy bay ở độ cao nào so với mặt đất?

Hướng dẫn giải

Độ cao của máy bay lần thứ nhất là:

7650 + 2357 = 10007 (m)

Độ cao của máy bay lần thứ hai là:

10007 – 1320 = 8687 (m)

Vậy độ cao máy bay sau hai lần thay đổi là 8687 m.

Bài 6. Trong các phát biểu sau đây, phát biểu nào đúng, phát biểu nào sai? Giải thích.

a) Tổng của hai số nguyên dương là số nguyên dương.

b) Tổng của hai số nguyên âm là số nguyên âm.

c) Tổng của hai số nguyên cùng dấu là số nguyên dương.

Lời giải: 

a) Tổng của hai số nguyên dương là số nguyên dương là phát biểu đúng.

b) Tổng của hai số nguyên âm là số nguyên âm là phát biểu đúng.

c) Tổng của hai số nguyên cùng dấu là số nguyên dương là phát biểu sai vì tổng của hai số nguyên âm là số nguyên âm, không phải là số nguyên dương. 

Ví dụ: – 3 và – 7 là hai số nguyên âm nên nó là hai số nguyên cùng dấu

Tổng của – 3 và – 7 là (– 3) + (– 7) = – (3 + 7) = – 10 là một số nguyên âm, không phải là số nguyên dương. 

Bài 7. Tính một cách hợp lí:

a) 48 + (– 66) + (– 34); 

b) 2 896 + (–2 021) + (– 2 896).

Lời giải: 

a) 48 + (– 66) + (– 34) 

= 48 + [(– 66) + (– 34)]                      (tính chất kết hợp)

= 48 + [– (66 + 34)]

= 48 + (– 100) 

= – (100 – 48) 

= – 52. 

b) 2 896 + (– 2 021) + (– 2 896) 

= 2 896 + (– 2 896) + (– 2 021)                      (tính chất giao hoán)

= [2 896 + (– 2 896)] + (– 2 021)       (tính chất kết hợp)

= 0 + (– 2 021)                                                (cộng hai số đối nhau) 

= – 2 021.                                                        (cộng với 0)

Bài 8. Một cửa hàng kinh doanh có lợi nhuận như sau: tháng đầu tiên là – 15 000 000 đồng; tháng thứ hai là 40 000 000 đồng. Tính lợi nhuận của cửa hàng sau hai tháng đó.

Lời giải: 

Lợi nhuận tháng đầu tiên của cửa hàng là – 15 000 000 đồng

Lợi nhuận tháng thứ hai của cửa hàng là 40 000 000 đồng

Do đó lợi nhuận của cửa hàng sau hai tháng đó là: 

(– 15 000 000) + 40 000 000 = 25 000 000 (đồng)

Vậy lợi nhuận của cửa hàng sau hai tháng là 25 000 000 đồng. 

Bài 9. Thực hiện các phép tính sau

a) 5 – (7 – 9);     

b) (– 3) – (4 – 6).

Lời giải:

a) Ta có: 5 – (7 – 9) = 5 – [7 + (– 9)]

     = 5 – (– 2)

     = 5 + 2 = 7

b) Ta có: (– 3) – (4 – 6) = (– 3) – [4 + (– 6)]

     = (– 3) – (– 2) = (– 3) + 2

     = –  (3 – 2) = – 1

Bài 10 . Tính tuổi thọ của nhà bác học Ác-si-mét, biết rằng ông sinh năm – 287 và mất năm – 212.

Lời giải:

Tuổi thọ của nhà bác học Ác – si – mét là:

– 212 – (– 287) = – 212 + 287 = 75 (tuổi)

Vậy tuổi thọ của nhà bác học Ác-si-mét là 75 tuổi. 

Câu 11. Thực hiện các phép tính sau: (-99) + (-11)

A. – 88

B. -100

C. -110

D. -99

Lời giải (-99) + (-11) = - (99 + 11) =  -110

Đáp án: C

Câu 12. Trong các phát biểu sau, có bao nhiêu phát biểu đúng, bao nhiêu phát biểu nào sai?

a) Tổng của một số nguyên âm và một số nguyên dương là một số nguyên âm.

b) Tổng của một số nguyên dương và một số nguyên âm là một số nguyên dương.

c) Hai số đối nhau có tổng bằng 0.

A. 1 phát biểu đúng, 2 phát biểu sai

B. 2 phát biểu đúng, 1 phát biểu sai

C. Cả 3 phát biểu đều đúng

D. Cả 3 phát biểu đều sai

Lời giải

Phát biểu a) là sai. Vì chẳng hạn ta có -2 là một số nguyên âm và 3 là một số nguyên dương thì tổng (-2) + 3 = 3 – 2 = 1 là một số nguyên dương.

Phát biểu b) là sai. Vì chẳng hạn ta có – 15 là một số nguyên âm và 10 là một số nguyên dường thì tổng (-15) + 10 = - (15 – 10) = -5 là một số nguyên âm. 

Phát biểu c) là đúng. Vì tổng của hai số nguyên đối nhau có tổng bằng 0.

Vậy có 2 phát biểu đúng, 1 phát biểu sai.

Đáp án: A

Câu 13. Trên trục số, một người bắt đầu từ điểm 0 di chuyển về bên phải (theo chiều dương) 4 đơn vị đến điểm +4. Sau đó, người đó đổi hướng di chuyển về bên trái 4 đơn vị. Hãy cho biết người đó dừng lại tại điểm nào?

22 câu Trắc nghiệm Phép cộng và phép trừ số nguyên (Kết nối tri thức) có đáp án – Toán 6 (ảnh 1)

A. 8

B. 4

C. 0

D. -8

Lời giải

Ta có: (+4) + (-4) = 0.

Người đó dừng lại tại điểm 0.

Đáp án: C

Câu 14. Trong giờ học nhóm, ba bạn An, Bình, Chi đã lần lượt phát biểu như sau:

a) Bạn An: “Tổng của hai số nguyên dương luôn là một số nguyên dương”.

b) Bạn Bình: “Tổng của hai số nguyên âm luôn là một số nguyên âm”.

c) Bạn Chi: “Tổng của hai số nguyên cùng dấu luôn cùng dấu với hai số nguyên đó”.

Bạn nào phát biểu đúng, bạn nào phát biểu sai? 

A. Bạn An, Bạn Bình đúng; bạn Chi sai

B. Bạn An đúng, bạn Bình và bạn Chi sai

C. Cả ba bạn đều đúng

D. Cả ba bạn đều sai

Lời giải

a) Bạn An phát biểu đúng vì nếu a và b là hai số nguyên dương thì a > 0, b > 0 nên tổng a + b > 0

b) Bạn Bình phát biểu đúng vì nếu a và b là hai số nguyên âm thì a < 0, b < 0 nên tổng a + b < 0

c) Bạn Chi phát biểu đúng vì nếu a và b cùng là hai số nguyên dương thì tổng a + b cũng là số nguyên dương, nếu a và b cùng là hai số nguyên âm thì tổng a + b cũng là số nguyên âm. 

Vậy cả ba bạn đều đúng.

Đáp án: D

Câu 15. Phát biểu nào sau đây đúng về kết quả của phép tính: (-35) – (-60);

A. Kết quả của phép tính là số nguyên âm

B. Kết quả của phép tính là số nguyên dương

C. Kết quả của phép tính là bằng 0

D. Cả A và B đều sai

Lời giải

Ta có: (-35) – (-60) = (-35) + 60 = 25;

Kết quả phép tính là một số nguyên dương.

Đáp án: A

Câu 16. Kết quả của phép tính (−100) + (−50) là

A. −50                         

B. 50                            

C. 150                          

D. −150

Trả lời:

Ta có (−100) + (−50) = −(100 + 50) = −150.

Đáp án cần chọn là: D

Câu 17. Kết quả của phép tính  (+25) + (+15) là

A. 40                         

B. 10                            

C. 50                          

D. 30

Trả lời:

Ta có (+25) + (+15) = 25 + 15 = 40.

Đáp án cần chọn là: A

Câu 18. Kết quả của phép tính (−23) + (−40) + (−17) là

A. −70                         

B. 46                            

C. 80                          

D. −80

Trả lời:

Ta có (−23) + (−40) + (−17)

= [−(23 + 40)] + (−17)

= (−63) + (−17)

 = −(63 + 17)

= −80.

Đáp án cần chọn là: D

Câu 19. Kết quả của phép tính (−50) + 30 là

A. −20                         

B. 20                            

C. −30                          

D. 80

Trả lời:

Ta có (−50) + 30

= −(50−30)

= −20.

Đáp án cần chọn là: A

Câu 20. Một chiếc tàu ngầm đang ở độ cao -30m so với mực nước biển. Sau đó tàu ngầm nổi lên 25m. Độ cao mới của chiếc tàu so với mực nước biển là:

A. −55m

B. −5m

C. 5m

D. 55m

Trả lời:

Độ cao mới của chiếc tàu so với mực nước biển là: 

(−30) + 25

= −(30 − 25)

= −5 (m)

Đáp án cần chọn là: B

B. Lý thuyết Phép cộng và phép trừ số nguyên

I. Phép cộng hai số nguyên cùng dấu 

1. Phép cộng hai số nguyên dương 

Cộng hai số nguyên dương chính là cộng hai số tự nhiên khác 0. 

Ví dụ: 7 + 5 = 12

2. Phép cộng hai số nguyên âm

Để cộng hai số nguyên âm, ta làm như sau:

Bước 1. Bỏ đấu “–” trước mỗi số

Bước 2. Tính tổng của hai số nguyên dương nhận được ở Bước 1

Bước 3. Thêm dấu “–” trước kết quả nhận được ở Bước 2, ta có tổng cần tìm.

Ví dụ: (– 80) + (– 6) = – (80 + 6) = – 86

Chú ý: 

+ Tổng của hai số nguyên dương là số nguyên dương.

+ Tổng của hai số nguyên âm là số nguyên âm.

II. Phép cộng hai số nguyên khác dấu 

Để cộng hai số nguyên khác dấu, ta làm như sau:

Bước 1. Bỏ dấu “–” trước số nguyên âm, giữ nguyên số còn lại

Bước 2. Trong hai số nguyên dương nhận được ở Bước 1, ta lấy số lớn hơn trừ đi số nhỏ hơn

Bước 3. Cho hiệu vừa nhận được dấu ban đầu của số lớn hơn ở Bước 2, ta có tổng cần tìm.

Ví dụ: (– 6) + 3 = – (6 – 3) = – 3

Chú ý: Hai số nguyên đối nhau có tổng bằng 0.

Chẳng hạn, – 7 và 7 là hai số nguyên đối nhau, ta có: (– 7) + 7 = 0. 

III. Tính chất của phép cộng các số nguyên 

Phép cộng các số nguyên có các tính chất sau:

+ Giao hoán: a + b = b + a;

+ Kết hợp: (a + b) + c = a + ( b + c);

+ Cộng với số 0: a + 0 = 0 + a = a;

+ Cộng với số đối: a + (– a) = (– a) + a = 0.

Ví dụ: Tính: a) 51 + (– 97) + 49;                   b) 65 + (– 42) + (– 65).

Lời giải:

a) 51 + (– 97) + 49 

= 51 + 49 + (– 97)       (tính chất giao hoán)

= (51 + 49) + (– 97)    (tính chất kết hợp)

= 100 + (– 97) 

= 100 – 97 

= 3. 

b) 65 + (– 42) + (– 65) 

= 65 + (– 65) + (– 42)                         (tính chất giao hoán) 

= [65 + (– 65)] + (– 42)                      (tính chất kết hợp)

= 0 + (– 42)                                         (cộng với số đối)

= – 42.                                     (cộng với số 0)

IV. Phép trừ hai số nguyên

Muốn trừ số nguyên a cho số nguyên b, ta cộng a với số đối của b.

a – b = a + (−b)

Chú ý:

− Cho hai số nguyên a và b. Ta gọi a – b là hiệu của a và b (a được gọi là số bị trừ, b là số trừ).

− Phép trừ luôn thực hiện được trong tập hợp số nguyên.

Như vậy, hiệu của hai số nguyên a và b là tổng của a và số đối của b.

Ví dụ: Thực hiện các phép tính sau:

a) 5 – 11;

b) 26 – (–12);

c) (–38) – (–50).

Hướng dẫn giải

a) 5 – 11 = 5 + ( −11) = −6;

b) 26 – (–12) = 26 + 12 = 38;

c) (–38) – (–50) = (−38) + 50 = 50 – 38 = 12.

Đánh giá

0

0 đánh giá