Với lời giải Toán 11 trang 116 Tập 2 chi tiết trong Bài tập cuối chương 8 sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 Bài tập cuối chương 8
Bài 1 trang 116 Toán 11 Tập 2: Cho hình lập phương MNPQ.M’N’P’Q’ có cạnh bằng a.
a) Góc giữa hai đường thẳng MN và M’P’ bằng:
A. 30°;
B. 45°;
C. 60°;
D. 90°.
b) Gọi α là số đo góc giữa đường thẳng M’P và mặt phẳng (MNPQ). Giá trị tanα bằng:
A. 1;
B. 2;
C.
D.
c) Số đo của góc nhị diện [N, MM’, P] bằng:
A. 30°;
B. 45°;
C. 60°;
D. 90°.
d) Khoảng cách từ điểm M đến mặt phẳng (NQQ’N’) bằng:
A. a;
B.
C.
D.
Lời giải:
a) Đáp án đúng là: B
Vì MNPQ.M’N’P’Q’ là hình lập phương nên MM’ // PP’ và MM’ = PP’.
Suy ra M’P’PM là hình bình hành. Do đó MP // M’P’.
Suy ra góc giữa hai đường thẳng MN và M’P’ bằng góc giữa hai đường thẳng MN và MP và bằng
Vì MNPQ là hình vuông nên đường chéo MP là đường phân giác của góc NMQ, do đó
Vậy góc giữa hai đường thẳng MN và M’P’ bằng 45°.
b) Đáp án đúng là: D
Vì MNPQ.M’N’P’Q’ là hình lập phương nên M’M ⊥ (MNPQ).
Khi đó, MP là hình chiếu của M’P trên (MNPQ).
Suy ra góc giữa đường thẳng M’P và mặt phẳng (MNPQ) bằng , tức là
Vì MNPQ là hình vuông nên do đó tam giác MNP vuông tại N.
Áp dụng định lí Pythagore trong tam giác MNP vuông tại N có:
MP2 = MN2 + NP2 = a2 + a2 = 2a2
Suy ra
Do M’M ⊥ (MNPQ) và MP ⊂ (MNPQ) nên M’M ⊥ MP.
Xét ∆M’PM vuông tại M (do M’M ⊥ MP) có:
Suy ra với
c) Đáp án đúng là: B
Do M’M ⊥ (MNPQ) và MN ⊂ (MNPQ), MP ⊂ (MNPQ).
Suy ra M’M ⊥ MN và M’M ⊥ MP.
Mà MN ∩ MP = M ∈ M’M.
Do đó là góc phẳng nhị diện của góc nhị diện [N, MM’, P].
Theo câu a ta có
Vậy số đo của góc nhị diện [N, MM’, P] bằng 45°.
d) Đáp án đúng là: B
Gọi O là giao điểm của MP và NQ.
Vì MNPQ là hình vuông nên MO ⊥ NQ.
Do MNPQ.M’N’P’Q’ là hình lập phương nên N’N ⊥ (MNPQ).
Mà MO ⊂ (MNPQ) nên N’N ⊥ MO.
Ta có: MO ⊥ NQ, MO ⊥ N’N và NQ ∩ N’N = N trong (NQQ’N’).
Suy ra MO ⊥ (NQQ’N’).
Khi đó, d(M, (NQQ’N’)) = MO.
Vì MNPQ là hình vuông và O = MP ∩ NQ nên O là trung điểm của MP.
Do đó
Vậy khoảng cách từ điểm M đến mặt phẳng (NQQ’N’) bằng
A. 2a;
B. 3a;
C. 4a;
D. 5a.
Lời giải:
Đáp án đúng là: C
Vì MNPQ.M’N’P’Q’ là hình hộp chữ nhật nên ta có:
⦁ NN’ ⊥ (MNPQ) mà NP ⊂ (MNPQ) nên NN’ ⊥ NP;
⦁ NN’ ⊥ (M’N’P’Q’) mà M’N’ ⊂ (MNPQ) nên NN’ ⊥ M’N’.
Từ các kết quả trên ta có đoạn thẳng NN’ là đoạn vuông góc chung của hai đường thẳng NP và M’N’.
Suy ra d(NP, M’N’) = NN’.
Do MNPQ.M’N’P’Q’ là hình hộp chữ nhật nên NN’ = MM’ = 4a.
Vậy khoảng cách giữa hai đường thẳng NP và M’N’ bằng 4a.
A. a3;
B. 3a3;
C.
D. 9a3.
Lời giải:
Đáp án đúng là: B
Thể tích của khối lăng trụ được tính theo công thức: V = Sh, trong đó S là diện tích đáy, h là chiều cao của khối lăng trụ.
Vậy thể tích của khối lăng trụ có S = a2 và h = 3a là:
V = a2.3a = 3a3.
A. a3;
B. 3a3;
C.
D. 9a3.
Lời giải:
Đáp án đúng là: A
Thể tích của khối chóp được tính theo công thức: trong đó S là diện tích đáy, h là chiều cao của khối chóp.
Vậy thể tích của khối chóp có S = a2 và h = 3a là:
A. abc;
B.
C.
D.
Lời giải:
Đáp án đúng là: D
Ta có: nên OA ⊥ OB;
nên OA ⊥ OC.
Mà OB ∩ OC = O trong (OBC).
Suy ra OA ⊥ (OBC).
Vì nên tam giác OBC vuông tại O.
Nên ta có diện tích tam giác OBC vuông tại O là:
Thể tích của khối tứ diện OABC với chiều cao OA = a và diện tích đáy là:
Bài 6 trang 116 Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC), AC ⊥ BC, AC = a (Hình 99).
a) Tính góc giữa hai đường thẳng SA và BC.
b) Tính góc giữa đường thẳng SC và mặt phẳng (ABC).
c) Tính số đo của góc nhị diện [B, SA, C].
d) Tính khoảng cách từ B đến mặt phẳng (SAC).
e) Tính khoảng cách giữa hai đường thẳng SA và BC.
g) Tính thể tích của khối chóp S.ABC.
Lời giải:
a) Do SA ⊥ (ABC) và BC ⊂ (ABC) nên SA ⊥ BC.
Vậy góc giữa hai đường thẳng SA và BC bằng 90°.
b) Vì SA ⊥ (ABC) nên AC là hình chiếu của SC trên (ABC).
Suy ra góc giữa đường thẳng SC và mặt phẳng (ABC) bằng
Do SA ⊥ (ABC) và AC ⊂ (ABC) nên SA ⊥ AC.
Xét tam giác SAC vuông tại A (do SA ⊥ AC) có:
Vậy góc giữa đường thẳng SC và mặt phẳng (ABC) bằng 60°.
c) Do SA ⊥ (ABC) và AB, AC đều nằm trên (ABC).
Suy ra SA ⊥ AB, SA ⊥ AC.
Mà AB ∩ AC = A ∈ SA.
Như vậy, là góc phẳng nhị diện của góc nhị diện [B, SA, C].
Xét tam giác ABC vuông tại C (do AC ⊥ BC) có:
Vậy số đo của góc nhị diện [B, SA, C] bằng 60°.
d) Ta có: BC ⊥ SA (theo câu a);
BC ⊥ AC;
SA ∩ AC = A trong (SAC).
Suy ra BC ⊥ (SAC).
Khi đó
Vậy khoảng cách từ B đến mặt phẳng (SAC) bằng
e) Ta có: AC ⊥ SA (theo câu c) và AC ⊥ BC.
Suy ra đoạn thẳng AC là đoạn vuông góc chung của hai đường thẳng SA và BC.
Khi đó d(SA, BC) = AC = a.
Vậy khoảng cách giữa hai đường thẳng SA và BC bằng a.
g) Diện tích tam giác ABC vuông tại C (do AC ⊥ BC) là:
Thể tích của khối chóp S.ABC có chiều cao và diện tích đáy là:
Xem thêm các lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 1 trang 116 Toán 11 Tập 2: Cho hình lập phương MNPQ.M’N’P’Q’ có cạnh bằng a...
Bài 6 trang 116 Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC), AC ⊥ BC, AC = a (Hình 99)...
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác: