Giải Toán 11 trang 103 Tập 2 Cánh diều

140

Với lời giải Toán 11 trang 103 Tập 2 chi tiết trong Bài 5: Khoảng cách sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 5: Khoảng cách

Luyện tập 3 trang 103 Toán 11 Tập 2: Cho hình chóp S.ABC có SA = a, góc giữa SA và mp(ABC) là 60°. Gọi M, N lần lượt là trung điểm của cạnh SA và SB. Chứng minh MN // (ABC) và tính d(MN, (ABC)).

Lời giải:

Luyện tập 3 trang 103 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Xét ∆SAB có: M, N lần lượt là trung điểm của SA và SB nên MN là đường trung bình của ∆SAB. Do đó MN // AB.

Hơn nữa AB ⊂ (ABC) nên MN // (ABC).

Suy ra d(MN, (ABC)) = d(M, (ABC)).

Gọi H là hình chiếu vuông góc của S trên (ABC) hay SH ⊥ (ABC).

Trong (SAH) kẻ MK // SH (K ∈ AH).

Mà SH ⊥ (ABC) suy ra MK ⊥ (ABC).

Khi đó, d(M, (ABC)) = MK.

Vì SH ⊥ (ABC) nên HA là hình chiếu của SA trên (ABC).

Suy ra góc góc giữa đường thẳng SA và mặt phẳng (ABC) bằng SAH^=60°.

Ta có: SH ⊥ (ABC) và AH ⊂ (ABC) nên SH ⊥ AH.

Xét tam giác SAH vuông tại H (do SH ⊥ AH) có:

 sinSAH^=SHSA,suy ra SH=SA.sinSAH^=a.sin60°=a32.

⦁ M là trung điểm của SA và MK // SH nên K là trung điểm của AH, do đó MK là đường trung bình của ∆SAH.

Suy ra MK=12SH=12.a32=a34.

Vậy dMN,ABC=dM,ABC=MK=a34.

V. Khoảng cách giữa hai mặt phẳng song song

Hoạt động 4 trang 103 Toán 11 Tập 2:a) Trong Hình 70, sàn nhà và trần nhà của căn phòng gợi nên hình ảnh hai mặt phẳng song song (P), (Q). Chiều cao của căn phòng là 3 m.

Chiều cao đó gợi nên khái niệm gì trong hình học liên quan đến hai mặt phẳng song song (P), (Q)?

Hoạt động 4 trang 103 Toán 11 Tập 2 | Cánh diều Giải Toán 11

b) Cho hai mặt phẳng (P) và (Q) song song với nhau. Xét điểm I tuỳ ý trong mặt phẳng (P), lấy K là hình chiếu của I trên (Q) (Hình 71). Khoảng cách IK từ điểm I đến mặt phẳng (Q) có phụ thuộc vào vị trí của điểm I trong mặt phẳng (P) hay không? Vì sao?

Hoạt động 4 trang 103 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Lời giải:

a) Vì sàn nhà và trần nhà của căn phòng gợi nên hình ảnh hai mặt phẳng song song (P), (Q) và ta biết chiều cao của căn phòng là 3 m.

Vậy nên chiều cao của căn phòng đó gợi nên khái niệm khoảng cách giữa hai mặt phẳng song song trong hình học.

b)

Hoạt động 4 trang 103 Toán 11 Tập 2 | Cánh diều Giải Toán 11

Trên mặt phẳng (P) lấy điểm J khác I.

Gọi H là hình chiếu của J trên (Q) nên JH ⊥ (Q).

Suy ra d(J, (Q)) = JH.

Do K là hình chiếu của I trên (Q) nên IK ⊥ (Q).

Suy ra d(I, (Q)) = IK.

Ta có: JH ⊥ (Q) và IK ⊥ (Q) nên JH //IK. (1)

Khi đó, hai đường thẳng JH và IK sẽ xác định một mặt phẳng là mặt phẳng (ABKH).

Ta thấy:

· I và J là hai điểm chung của hai mặt phẳng (IJHK) và (P).

Suy ra IJ = (IJHK) ∩ (P).

· H và K là hai điểm chung của hai mặt phẳng (IJHK) và (Q).

Suy ra HK = (IJHK) ∩ (Q).

Ta có: (P) // (Q);

            IJ = (IJHK) ∩ (P);

            HK = (IJHK) ∩ (Q).

Suy ra IJ // HK. (2)

Từ (1), (2) ta có IJHK là hình bình hành.

Suy ra IK = JH hay d(I, (Q)) = d(J, (Q)).

Vậy khoảng cách IK từ điểm I đến mặt phẳng (Q) không phụ thuộc vào vị trí của điểm I trong mặt phẳng (P).

Đánh giá

0

0 đánh giá