Với lời giải Toán 11 trang 103 Tập 2 chi tiết trong Bài 5: Khoảng cách sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 Bài 5: Khoảng cách
Luyện tập 3 trang 103 Toán 11 Tập 2: Cho hình chóp S.ABC có SA = a, góc giữa SA và mp(ABC) là 60°. Gọi M, N lần lượt là trung điểm của cạnh SA và SB. Chứng minh MN // (ABC) và tính d(MN, (ABC)).
Lời giải:
Xét ∆SAB có: M, N lần lượt là trung điểm của SA và SB nên MN là đường trung bình của ∆SAB. Do đó MN // AB.
Hơn nữa AB ⊂ (ABC) nên MN // (ABC).
Suy ra d(MN, (ABC)) = d(M, (ABC)).
Gọi H là hình chiếu vuông góc của S trên (ABC) hay SH ⊥ (ABC).
Trong (SAH) kẻ MK // SH (K ∈ AH).
Mà SH ⊥ (ABC) suy ra MK ⊥ (ABC).
Khi đó, d(M, (ABC)) = MK.
Vì SH ⊥ (ABC) nên HA là hình chiếu của SA trên (ABC).
Suy ra góc góc giữa đường thẳng SA và mặt phẳng (ABC) bằng
Ta có: SH ⊥ (ABC) và AH ⊂ (ABC) nên SH ⊥ AH.
Xét tam giác SAH vuông tại H (do SH ⊥ AH) có:
⦁ suy ra
⦁ M là trung điểm của SA và MK // SH nên K là trung điểm của AH, do đó MK là đường trung bình của ∆SAH.
Suy ra
Vậy
V. Khoảng cách giữa hai mặt phẳng song song
Hoạt động 4 trang 103 Toán 11 Tập 2:a) Trong Hình 70, sàn nhà và trần nhà của căn phòng gợi nên hình ảnh hai mặt phẳng song song (P), (Q). Chiều cao của căn phòng là 3 m.
Chiều cao đó gợi nên khái niệm gì trong hình học liên quan đến hai mặt phẳng song song (P), (Q)?
b) Cho hai mặt phẳng (P) và (Q) song song với nhau. Xét điểm I tuỳ ý trong mặt phẳng (P), lấy K là hình chiếu của I trên (Q) (Hình 71). Khoảng cách IK từ điểm I đến mặt phẳng (Q) có phụ thuộc vào vị trí của điểm I trong mặt phẳng (P) hay không? Vì sao?
Lời giải:
a) Vì sàn nhà và trần nhà của căn phòng gợi nên hình ảnh hai mặt phẳng song song (P), (Q) và ta biết chiều cao của căn phòng là 3 m.
Vậy nên chiều cao của căn phòng đó gợi nên khái niệm khoảng cách giữa hai mặt phẳng song song trong hình học.
b)
Trên mặt phẳng (P) lấy điểm J khác I.
Gọi H là hình chiếu của J trên (Q) nên JH ⊥ (Q).
Suy ra d(J, (Q)) = JH.
Do K là hình chiếu của I trên (Q) nên IK ⊥ (Q).
Suy ra d(I, (Q)) = IK.
Ta có: JH ⊥ (Q) và IK ⊥ (Q) nên JH //IK. (1)
Khi đó, hai đường thẳng JH và IK sẽ xác định một mặt phẳng là mặt phẳng (ABKH).
Ta thấy:
· I và J là hai điểm chung của hai mặt phẳng (IJHK) và (P).
Suy ra IJ = (IJHK) ∩ (P).
· H và K là hai điểm chung của hai mặt phẳng (IJHK) và (Q).
Suy ra HK = (IJHK) ∩ (Q).
Ta có: (P) // (Q);
IJ = (IJHK) ∩ (P);
HK = (IJHK) ∩ (Q).
Suy ra IJ // HK. (2)
Từ (1), (2) ta có IJHK là hình bình hành.
Suy ra IK = JH hay d(I, (Q)) = d(J, (Q)).
Vậy khoảng cách IK từ điểm I đến mặt phẳng (Q) không phụ thuộc vào vị trí của điểm I trong mặt phẳng (P).
Xem thêm các lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Câu hỏi khởi động trang 100 Toán 11 Tập 2: Hình 58 mô tả cách đo chiều cao của một người khi kiểm tra sức khỏe. Coi mặt bản sắt người đó đứng lên là mặt phẳng (P), mặt bản sắt áp vào đầu người đó là mặt phẳng (Q) song song với (P)...
Hoạt động 1 trang 101 Toán 11 Tập 2: Khi lắp thiết bị cho nhà bạn Nam, bác thợ khoan tường tại vị trí M trên tường có độ cao so với nền nhà là MH = 80 cm. Quan sát Hình 61, nền nhà gợi nên mặt phẳng (P), cho biết độ dài đoạn thẳng MH gợi nên khái niệm gì trong hình học liên quan đến điểm M và mặt phẳng (P)...
Luyện tập 1 trang 101 Toán 11 Tập 2: Cho hình chóp S.ABC có SA ⊥ (ABC), AI ⊥ BC (I ∈ BC), AH ⊥ SI (H ∈ SI). Chứng minh rằng khoảng cách từ A đến mặt phẳng (SBC) bằng AH...
Hoạt động 2 trang 102 Toán 11 Tập 2: Trong Hình 64, hai mép của con đường gợi nên hình ảnh hai đường thẳng song song Δ và ∆’. Xét điểm A trên đường thẳng Δ...
Luyện tập 2 trang 102 Toán 11 Tập 2: Người ta dựng các cột đèn vuông góc với mặt đường, trong đó mỗi cột đèn gợi nên hình ảnh một đường thẳng. Khoảng cách giữa hai chân cột đèn liên tiếp đo được là 5 m. Tại sao có thể nói khoảng cách giữa hai cột đèn đó là 5 m?...
Hoạt động 3 trang 102 Toán 11 Tập 2: Trong Hình 67, thanh gỗ dọc phía trên các cột và mặt đường hành lang gợi nên hình ảnh đường thẳng Δ và mặt phẳng (P) song song với nhau, chiều cao của chiếc cột có đỉnh cột A là khoảng cách từ điểm A đến mặt phẳng (P)...
Luyện tập 3 trang 103 Toán 11 Tập 2: Cho hình chóp S.ABC có SA = a, góc giữa SA và mp(ABC) là 60°. Gọi M, N lần lượt là trung điểm của cạnh SA và SB. Chứng minh MN // (ABC) và tính d(MN, (ABC))...
Hoạt động 4 trang 103 Toán 11 Tập 2:a) Trong Hình 70, sàn nhà và trần nhà của căn phòng gợi nên hình ảnh hai mặt phẳng song song (P), (Q). Chiều cao của căn phòng là 3 m...
Luyện tập 4 trang 104 Toán 11 Tập 2: Cho hình lăng trụ ABC.A’B’C’ có cạnh bên bằng a, góc giữa đường thẳng AA’ và mặt phẳng (ABC) bằng 60°. Tính khoảng cách giữa hai mặt phẳng (ABC) và (A’B’C’)...
Hoạt động 5 trang 104 Toán 11 Tập 2: Trong Hình 73, khuôn cửa phía trên và mép cánh cửa phía dưới gợi nên hình ảnh hai đường thẳng a và b chéo nhau, hai bản lề của cánh cửa nằm trên đường thẳng c...
Luyện tập 5 trang 106 Toán 11 Tập 2: Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, SA ⊥ (ABC). Tính d(SA, BC)...
Bài 1 trang 106 Toán 11 Tập 2: Hình 76 gợi nên hình ảnh hai mặt phẳng (P) và (Q) song song với nhau. Cột gỗ cao 4,2 m. Khoảng cách giữa (P) và (Q) là bao nhiêu mét?...
Bài 2 trang 106 Toán 11 Tập 2: Cho hình tứ diện ABCD có AB = a, BC = b, BD = c, Gọi M, N, P lần lượt là trung điểm của AB, AC, AD (Hình 77)...
Bài 3 trang 106 Toán 11 Tập 2: Với giả thiết ở Bài tập 2, hãy:..
Bài 4 trang 106 Toán 11 Tập 2: Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình vuông cạnh a, SA = a (Hình 78)...
Bài 5 trang 106 Toán 11 Tập 2: Với giả thiết ở Bài tập 4, hãy:...
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác: