Với lời giải SBT Toán 11 trang 118 Tập 2 chi tiết trong Bài tập cuối chương 8 sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài tập cuối chương 8
a) Đường thẳng AC vuông góc với mặt phẳng nào trong các mặt sau đây?
A. (SAB);
B. (SAD);
C. (SBC);
D. (SBD).
b) Số đo của góc nhị diện [A, SO, M] bằng:
A. 30°;
B. 45°;
C. 135°;
D. 150°.
c) Khoảng cách giữa hai đường thẳng SO và BC bằng:
A. a;
B.
C.
D.
d) Thể tích của khối chóp S.ABCD bằng:
A. a3;
B.
C.
D. 3a3.
e) Khoảng cách từ C đến mặt phẳng (SOM) bằng:
A. a;
B.
C.
D.
g) Côtang của góc giữa đường thẳng SM và (ABCD) bằng:
A.
B. 2;
C. 1;
D.
Lời giải:
a) Đáp án đúng là: D
Ta có S.ABCD là hình chóp tứ giác đều nên ABCD là hình vuông.
Suy ra AC ⊥ BD.
Lại có O là hình chiếu của S trên (ABCD) hay SO ⊥ (ABCD).
Mà AC ⊂ (ABCD) nên SO ⊥ AC.
Ta có: AC ⊥ BD, AC ⊥ SO, BD ∩ SO = O trong (SBD)
Từ đó ta có AC ⊥ (SBD).
b) Đáp án đúng là: C
Ta có: SO ⊥ (ABCD), OM ⊂ (ABCD) và OA ⊂ (ABCD).
Nên SO ⊥ OA, SO ⊥ OM.
Mà OA ∩ OM = O ∈ SO.
Do đó, là góc phẳng nhị diện của góc nhị diện [A, SO, M].
Xét tam giác ACD có: O, M lần lượt là trung điểm của AC và CD.
Suy ra OM là đường trung bình của tam giác ACD nên OM // AD và
Từ đó ta có: (hai góc so le trong)
Mà (do ABCD là hình vuông) nên
Theo câu a ta có AC ⊥ BD nên
Như vậy:
Số đo của góc nhị diện [A, SO, M] bằng 135°.
c) Đáp án đúng là: B
Gọi N là trung điểm của BC.
Vì ABCD là hình vuông, AC cắt CD tại O nên ta có
Từ đó ta có tam giác BOC cân tại O.
Mặt khác ON là đường trung tuyến trong tam giác BOC (do N là trung điểm của BC).
Suy ra ON ⊥ BC.
Lại có: SO ⊥ (ABCD), ON ⊂ (ABCD) nên SO ⊥ ON.
Ta thấy: ON ⊥ BC, ON ⊥ SO hay ON là đoạn vuông góc chung của hai đường thẳng SO và BC.
Như vậy: d(SO, BC) = ON.
Xét tam giác ABC có: O, N lần lượt là trung điểm của AC và BC.
Suy ra ON là đường trung bình của tam giác ABC nên
Vậy
d) Đáp án đúng là: C
Thể tích của khối chóp S.ABCD có đường cao SO = a, diện tích đáy SABCD = a2 là:
e) Đáp án đúng là: B
Ta có: SO ⊥ (ABCD), CM ⊂ (ABCD) nên SO ⊥ CM.
Do M là hình chiếu của O trên CD nên OM ⊥ CD hay OM ⊥ CM.
Ta có: CM ⊥ SO, CM ⊥ OM, SO ∩ OM = O trong (SOM)
Suy ra CM ⊥ (SOM).
Như vậy: d(C, (SOM)) = CM.
Theo câu c ta có: OC = OD nên suy ra tam giác OCD cân tại O.
Mà OM ⊥ CD hay ta có OM là đường trung tuyến của tam giác OCD.
Vậy khoảng cách từ C đến mặt phẳng (SOM) bằng
g) Đáp án đúng là: A
Do O là hình chiếu của S trên (ABCD) nên góc giữa đường thẳng SM và (ABCD) bằng góc giữa hai đường thẳng SM và OM và bằng
Xét tam giác SOM vuông tại O (do SO ⊥ OM) có:
Vậy côtang của góc giữa đường thẳng SM và (ABCD) bằng
Bài 58 trang 118 SBT Toán 11 Tập 2: Trong các khẳng định sau, có bao nhiêu khẳng định đúng?
(1): Trong không gian, hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau.
(2): Trong không gian, hai đường thẳng vuông góc với nhau thì cùng nằm trên một mặt phẳng.
(3): Đường thẳng vuông góc với mặt phẳng thì nó vuông góc với mọi đường thẳng nằm trong mặt phẳng đó.
(4): Đường thẳng song song với một trong hai mặt phẳng vuông góc thì song song hoặc nằm trên mặt phẳng còn lại.
(5): Ba mặt phẳng đôi một vuông góc với nhau thì ba giao tuyến tạo thành cũng đôi một vuông góc với nhau.
A. 2;
B. 3;
C. 4;
D. 5.
Lời giải:
Đáp án đúng là: A
Khẳng định (1) là sai: Xét hình lập phương ABCD.A’B’C’D’ ta có: AD và A’B’ cùng vuông góc với AA’, nhưng AD không song song với A’B’ (do AD ⊥ (A’B’BA) nên AD ⊥ A’B’),
Khẳng định (2) là sai: Xét hình lập phương ABCD.A’B’C’D’ ta có: AD ⊥ A’B’ nhưng AD và A’B’ không cùng nằm trong một mặt phẳng nào cả.
Khẳng định (3) là đúng, do theo tính chất đường thẳng vuông góc với mặt phẳng nó sẽ vuông góc với tất cả các đường thẳng nằm trong mặt phẳng đó.
Khẳng định (4) là sai: Xét hình lập phương ABCD.A’B’C’D’ ta có: hai mặt phẳng (A’B’BA), (A’ADD’) vuông góc với nhau, và C’B’ // (A’ADD’), nhưng B’C’ không song song hay nằm trên (A’B’BA) (do B’C’ ⊥ (A’B’BA)).
Khẳng định (5) là đúng: Xét ba mặt phẳng (P), (Q), (R) đôi một vuông góc với nhau. Gọi a, b, c lần lượt là giao tuyến của các cặp mặt phẳng (P) và (Q), (Q) và (R), (R) và (P).
Do (P) và (Q) cùng vuông góc với (R) nên giao tuyến a của (P) và (Q) cũng vuông góc với (R).
Mà b, c nằm trên (R) nên a vuông góc với b và a vuông góc với c.
Tương tự ta cũng suy ra được: b vuông góc với a, b vuông góc với c, c vuông góc với a và c vuông góc với b. Tức là a, b, c đôi một vuông góc với nhau.
Vậy trong 5 khẳng định đã cho, có hai khẳng định đúng là (3) và (5).
Xem thêm lời giải sách bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 58 trang 118 SBT Toán 11 Tập 2: Trong các khẳng định sau, có bao nhiêu khẳng định đúng?...
Bài 59 trang 119 SBT Toán 11 Tập 2: Cho hình lập phương ABCD.A’B’C’D’ có AB = a...
Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác: