20 câu Trắc nghiệm Hàm số lượng giác và đồ thị (Cánh diều 2024) có đáp án - Toán lớp 11

1.9 K

Tailieumoi.vn xin giới thiệu Trắc nghiệm Toán lớp 11 Bài 3: Hàm số lượng giác và đồ thị sách Cánh diều. Bài viết gồm 20 câu hỏi trắc nghiệm với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài trắc nghiệm Toán 11.

Trắc nghiệm Toán 11 Bài 3: Hàm số lượng giác và đồ thị

Câu 1. Tìm tập giá trị T của hàm số y=3cos2x+5.

A. T=1;1.                              B. T=1;11.

C. T=2;8.                                D. T=5;8.

Đáp án đúng là: C

Ta có 

1cos2x1 → 33cos2x3 → 23cos2x+58

 2y8  T=2;8.

Câu 2. Hàm số y=5+4sin2xcos2x có tất cả bao nhiêu giá trị nguyên?

A. 3                     B. 4                     C. 5                   D. 6

Đáp án đúng là: C

Ta có y=5+4sin2xcos2x=5+2sin4x .

Mà 1sin4x122sin4x235+2sin4x7

3y7yy3;4;5;6;7 nên y có 5 giá trị nguyên.

Câu 3. Tìm giá trị nhỏ nhất m của hàm số y=2sin2016x+2017 .

A. m=20162.                          B. m=2.

C. m=1.                                     D. m=20172.

Đáp án đúng là: B

Ta có 1sin2016x+2017122sin2016x+20172.

Do đó giá trị nhỏ nhất của hàm số là -2.

Câu 4. Hàm số nào sau đây có chu kì khác π?

A.y=sinπ32x.                  B. y=cos2x+π4. 

C. y=tan2x+1.                 D. y=cosxsinx.

Đáp án đúng là: C

 y=tan2x+1 có chu kì T=π2=π2.

Nhận xét. Hàm số y=cosxsinx=12sin2x có chu kỳ là π.

Câu 5. Hàm số y=cos2x+2sinx+2 đạt giá trị nhỏ nhất tại x0. Mệnh đề nào sau đây là đúng?

A. x0=π2+k2π,  k.                   B. x0=π2+k2π,  k.

C. x0=π+k2π,  k.                     D. x0=k2π,  k.

Đáp án đúng là: B

Ta có y=cos2x+2sinx+2=1sin2x+2sinx+2

=sin2x+2sinx+3=sinx12+4.

Mà 1sinx12sinx100sinx124

0sinx1244sinx12+40.

Suy ra giá trị nhỏ nhất của hàm số bằng 0 .

Dấu “=” xảy ra sinx=1x=π2+k2πk.

Câu 6. Trong các hàm số sau, hàm số nào là hàm số chẵn?

A. y=sinx.            B.y=cosx.

           

C.y=tanx.             D. y=cotx.

Đáp án đúng là: B

Nhắc lại kiến thức cơ bản:

- Hàm số y=sinx  là hàm số lẻ.

- Hàm số y=cosx  là hàm số chẵn.

- Hàm số y=tanx  là hàm số lẻ.

- Hàm số y=cotx  là hàm số lẻ.

Vậy B là đáp án đúng.

Câu 7. Tìm chu kì  của hàm số y=sin5xπ4.

A. T=2π5.           B.T=5π2.            C.T=π2.          D.T=π8.

Đáp án đúng là: A

Hàm số y=sinax+b tuần hoàn với chu kì T  =  2πa .

Áp dụng: Hàm số y=sin5xπ4  tuần hoàn với chu kì T=2π5.

Câu 8. Tìm tập xác định D của hàm số y=1+sinxcosx1.

A. D=.                                       B. D=\π2+kπ,k.

C. D=\kπ,k.               D. D=\k2π,k.

Đáp án đúng là: D

Hàm số xác định khi và chỉ khi cosx10cosx1xk2π,k.

Vậy tập xác định D=\k2π,k.

Câu 9. Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?

A. y=sinxcos2x.                                B.y=sin3x.cosxπ2.

C. y=tanxtan2x+1.                                        D. y=cosxsin3x.

Đáp án đúng là: B

Ta dễ dàng kiểm tra được A, C, D là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O.

Xét đáp án B, ta có y=fx=sin3x.cosxπ2=sin3x.sinx=sin4x. Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.

Câu 10. Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

A.y=cot4x.                                   B. y=sinx+1cosx.           

C.y=tan2x.                                   D. y=cotx.

Đáp án đúng là: A

Ta kiểm tra được đáp án A là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ.

Đáp án B là hàm số không chẵn, không lẻ. Đáp án C và D là các hàm số chẵn.

Câu 11. Cho hai hàm số fx=cos2x1+sin23x và gx=sin2xcos3x2+tan2x  . Mệnh đề nào sau đây là đúng?

A. fx lẻ và gxchẵn.                                   B. fx gxchẵn.

C. fxchẵn, gxlẻ.                                       D. fx gxlẻ.

Đáp án đúng là: B

-Xét hàm số fx=cos2x1+sin23x.

TXĐ: D=. Do đó xDxD.

Ta có fx=cos2x1+sin23x=cos2x1+sin23x=fx fx  là hàm số chẵn.

-Xét hàm số gx=sin2xcos3x2+tan2x

TXĐ: D=\π2+kπ k. Do đó xDxD.

Ta có gx=sin2xcos3x2+tan2x=sin2xcos3x2+tan2x=gxgx là hàm số chẵn.

Vậy fx và gx chẵn.

Câu 12. Gọi  lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=sin2x4sinx+5 . Tính P=M2m2.

A. P = 1.            B. P = 7.           C. P = 8.        D. P = 2.

Đáp án đúng là: D

Ta có y=sin2x4sinx+5=sinx22+1.

Do 1sinx13sinx211sinx229

2sinx22+110M=10m=2P=M2m2=2.

Đánh giá

0

0 đánh giá