Tailieumoi.vn xin giới thiệu Bài tập Toán 8 Chương 1 Bài 5:Những hằng đẳng thức đáng nhớ (tiếp). Bài viết gồm 50 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 8. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Chương 1 Bài 5: Những hằng đẳng thức đáng nhớ (tiếp). Mời các bạn đón xem:
Bài tập Toán 11 Chương 1 Bài 5: Những hằng đẳng thức đáng nhớ (tiếp)
A. Bài tập Những hằng đẳng thức đáng nhớ (tiếp)
I. Bài tập trắc nghiệm
Bài 1: Chọn câu sai.
A. A3 + B3 = (A + B)(A2 – AB + B2)
B. A3 - B3 = (A - B)(A2 + AB + B2)
C. (A + B)3 = (B + A)3
D. (A – B)3 = (B – A)3
Đáp án: D
Giải thích:
Ta có A3 + B3
= (A + B)(A2 – AB + B2)
và A3 - B3
= (A - B)(A2 + AB + B2) nên A, B đúng.
Vì A + B = B + A
=> (A + B)3 = (B + A)3 nên C đúng
Vì A – B = - (B – A)
=> (A – B)3 = -(B – A)3 nên D sai
Bài 2: Viết biểu thức
(x – 3y)(x2 + 3xy + 9y2) dưới dạng hiệu hai lập phương
A. x3 + (3y)3
B. x3 + (9y)3
C. x3 – (3y)3
D. x3 – (9y)3
Đáp án: C
Giải thích:
Ta có (x – 3y)(x2 + 3xy + 9y2)
= (x – 3y)(x + x.3y + (3y)2)
= x3 – (3y)3
Bài 3: Viết biểu thức
(3x – 4)(9x2 + 12x + 16) dưới dạng hiệu hai lập phương
A. (3x)3 – 163
B. 9x3 – 64
C. 3x3 – 43
D. (3x)3 – 43
Đáp án: D
Giải thích:
Ta có (3x – 4)(9x2 + 12x + 16)
= (3x – 4)((3x)2 + 3x.4 + 42)
= (3x)3 – 43
Bài 4: Rút gọn biểu thức
M = (2x + 3)(4x2 – 6x + 9) – 4(2x3 – 3)
ta được giá trị của M là
A. Một số lẻ
B. Một số chẵn
C. Một số chính phương
D. Một số chia hết cho 5
Đáp án: A
Giải thích:
Ta có
M = (2x + 3)(4x2 – 6x + 9) – 4(2x3 – 3)
= (2x + 3)[(2x)2 – 2x.3 + 32] – 8x3 + 12
= (2x)3 + 33 – 8x3 + 12
= 8x3 + 27 – 8x3 + 12 = 39
Vậy giá trị của M là một số lẻ
Bài 5: Giá trị của biểu thức
E = (x + 1)(x2 – x + 1) – (x – 1)(x2 + x + 1) là
A. 2
B. 3
C. 1
D. 4
Đáp án: A
Giải thích:
Ta có
E = (x + 1)(x2 – x + 1) – (x – 1)(x2 + x + 1)
= x3 + 1 – (x3 – 1)
= x3 + 1 – x3 + 1 = 2
Vậy E = 2
Bài 6: Cho M = 8(x – 1)(x2 + x + 1) – (2x – 1)(4x2 + 2x + 1) và N = x(x + 2)(x – 2) – (x + 3)(x2 – 3x + 9) – 4x.
Chọn câu đúng
A. M = N
B. N = M + 2
C. M = N – 20
D. M = N + 20
Đáp án: D
Giải thích:
Ta có
M = 8(x – 1)(x2 + x + 1) – (2x – 1)(4x2 + 2x + 1)
= 8(x3 – 1) – ((2x)3 – 1)
= 8x3 – 8 – 8x3 + 1 = -7
nên M = -7
N = x(x + 2)(x – 2) – (x + 3)(x2 – 3x + 9) – 4x
= x(x2 – 4) – (x3 + 33) + 4x
= x3 – 4x – x3 – 27 + 4x
= -27
=> N = -27
Vậy M = N + 20
Bài 7: Rút gọn biểu thức
H = (x + 5)(x2 – 5x + 25) – (2x + 1)3 + 7(x – 1)3 – 3x(-11x + 5)
ta được giá trị của H là
A. Một số lẻ
B. Một số chẵn
C. Một số chính phương
D. Một số chia hết cho 12
Đáp án: A
Giải thích:
Ta có
H = (x + 5)(x2 – 5x + 25) – (2x + 1)3 + 7(x – 1)3 – 3x(-11x + 5)
= x3 + 53 – (8x3 + 3.(2x)2.1+ 3.2x.12 + 1) + 7(x3 – 3x2 + 3x – 1) + 33x2 – 15x
= x3 + 125 – 8x3 – 12x2 – 6x – 1 + 7x3 – 21x2 + 21x – 7 + 33x2 – 15x
= (x3 – 8x3 + 7x3) + (-12x2 – 21x2 + 33x2) + (-6x + 21x – 15x) + 125 – 1 – 7
= 117
Vậy giá trị của M là một số lẻ
Bài 8: Giá trị của biểu thức
A = (x2 – 3x + 9)(x + 3) – (54 + x3)
A. 54
B. -27
C. -54
D. 27
Đáp án: B
Giải thích:
Ta có A = (x2 – 3x + 9)(x + 3) – (54 + x3)
A = (x2 – 3x + 32)(x + 3) – (54 + x3)
A = x3 + 33 – 54 – x3
A = 27 – 54 = -27
Vậy A = -27
Bài 9: Viết biểu thức (x2 + 3)(x4 – 3x2 + 9)
dưới dạng tổng hai lập phương
A. (x2)3 + 33
B. (x2)3 – 33
C. (x2)3 + 93
D. (x2)3 – 93
Đáp án: A
Giải thích:
Ta có (x2 + 3)(x4 – 3x2 + 9)
= (x2 + 3)((x2)2 – 3.x2 + 32)
= (x2)3 + 33
Bài 10: Cho A = 13+ 23 + 33 + 43 + … + 103.
Khi đó
A. A chia hết cho 11
B. A chia hết cho 5
C. Cả A, B đều đúng
D. Cả A, B đều sai
Đáp án: C
Giải thích:
Ta có A = 13+ 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103
= (13 + 103) + (23 + 93) + (33 + 83) + (43 + 73) + (53 + 63)
= 11(12 – 10 + 102) + 11(22 – 2.9 + 92) + … + 11(52 – 5.6 + 62)
Vì mỗi số hạng trong tổng đều chia hết cho 11 nên A ⁝ 11.
Lại có A = 13+ 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103
= (13 + 93) + (23 + 83) + (33 + 73) + (43 + 63) + (53 + 103)
= 10(12 – 9 + 92) + 10(22 – 2.8 + 82) + … + 53 + 103
Vì mỗi số hạng trong tổng đều chia hết cho 5 nên A ⁝ 5.
Vậy A chia hết cho cả 5 và 11
II. Bài tập tự luận
Bài 1: Viết các biểu thức sau dưới dạng tích.
a) ;
b) 8u3 – v3 .
Lời giải:
a)
b) 8u3 – v3 = (2u)3 – v3 = (2u – v)(4u2 + 2uv + v2).
Bài 2: Viết các biểu thức sau dưới dạng tổng hoặc hiệu các lập phương.
Lời giải:
Bài 3: Tính giá trị biểu thức.
a) M = x3 + y3 + 6x2y2(x + y) + 3xy(x2 + y2) khi x + y = 1;
b) biết x + 2y = 0.
Lời giải:
a) M = x3 + y3 + 6x2y2(x + y) + 3xy(x2 + y2)
M = (x + y)3 – 3xy(x + y) + 6x2y2(x + y) + 3xy(x2 + y2)
M = 13 – 3xy.1 + 6x2y2. 1+ 3xy(x2 + y2) (vì x + y = 1)
M = 1 – 3xy + 3xy(2xy + x2 + y2)
M = 1 – 3xy + 3xy(x + y)2
M = 1 – 3xy + 3xy (vì x + y = 1)
M = 1.
Bài 4: Tìm x, biết:
x(x – 5)(x + 5) – (x + 2)(x2 – 2x + 4) = 17.
Lời giải:
x(x – 5)(x + 5) – (x + 2)(x2 – 2x + 4) = 17
x(x2 – 25) – (x3 + 23) = 17
x3 – 25x – x3 – 8 = 17
– 25x = 25
x = – 1
Vậy x = – 1.
B. Lý thuyết Những hằng đẳng thức đáng nhớ (tiếp)
1. Tổng hai lập phương
Tổng của lập phương hai biểu thức bằng tích của tổng hai biểu thức và bình phương thiếu của hiệu hai biểu thức đó.
Với A, B là các biểu thức tùy ý, ta có: A3 + B3 = (A + B)(A2 – AB + B2)
Chú ý: A2 – AB + B2 được gọi là bình phương thiếu của một hiệu.
Ví dụ 1:
x3 + 43 = (x + 4)(x2 – 4x + 42) = (x + 4)(x2 – 4x + 16)
2. Hiệu hai lập phương
Hiệu của lập phương hai biểu thức bằng tích của hiệu hai biểu thức và bình phương thiếu của tổng hai biểu thức đó.
Với A, B là các biểu thức tùy ý, ta có: A3 – B3 = (A – B)(A2 + AB + B2)
Chú ý: A2 + AB + B2 được gọi là bình phương thiếu của một tổng.
Ví dụ 2:
x3 – (2y)3 = (x – 2y)[x2 + 2xy + (2y)2] = (x – 2y)(x2 + 2xy + 4y2)
27a3 – 1 = (3a)3 – 13 = (3a – 1)[(3a)2 + 3a.1 + 12] = (3a – 1)(9a2 + 3a + 1)