Giải SGK Toán lớp 6 Bài 9 (Kết nối tri thức): Dấu hiệu chia hết

Tải xuống 9 2.5 K 8

Với giải bài tập Toán lớp 6 Bài 9: Dấu hiệu chia hết chi tiết bám sát nội dung sgk Toán 6 Tập 1 Kết nối tri thức với cuộc sống giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 6. Mời các bạn đón xem:

Giải bài tập Toán lớp 6 Bài 9: Dấu hiệu chia hết

Video giải Toán 6 Bài 9: Dấu hiệu chia hết - Kết nối tri thức

Trả lời câu hỏi giữa bài

Giải Toán lớp 6 trang 34 Tập 1

Hoạt động 1 trang 34 Toán lớp 6 Tập 1: Số 230 có chia hết cho 2 và chia hết cho 5 không?

Lời giải:

Ta có: 230 : 2 = 115 nên 230 chia hết cho 2

             230 : 5 = 46 nên 230 chia hết cho 5

Vậy 230 chia hết cho cả 2 và 5.

Hoạt động 2 trang 34 Toán lớp 6 Tập 1: Xét Vận dụng tính chất chia hết của một tổng, hãy cho biết. Thay dấu * bởi chữ số(* là chữ số tận cùng của n). Ta viết

Vận dụng tính chất chia hết của một tổng, hãy cho biết:

a) Thay dấu * bởi chữ số nào thì n chia hết cho 2?

b) Thay dấu * bởi chữ số nào thì n chia hết cho 5?

Lời giải:

a) n = 230 + * (* là chữ số tận cùng của n,* ∈ N; 0 ≤ * ≤ 9)

Để n ⁝ 2 hay (230+*) ⁝ 2 mà 230 ⁝ 2 nên * ⁝ 2

Lại có 0 ≤ * ≤ 9 do đó * ∈ { 0;2;4;6;8}

b) n = 230 + * (* là chữ số tận cùng của n, * ∈ N; 0 ≤ * ≤ 9)

Để N ⁝ 5 hay (230+*) ⁝ 5 mà 230 ⁝ 5 nên * ⁝ 5

Lại có 0 ≤ * ≤ 9 do đó * ∈ {0;5}.

Giải Toán lớp 6 trang 35 Tập 1

Luyện tập 1 trang 35 Toán lớp 6 Tập 1: (1) Không thực hiện phép tính, em hãy cho biết tổng (hiệu) sau có chia hết cho 2 không.

a) 1 954 + 1 975           b) 2 020 – 938

(2) Không thực hiện phép tính, em hãy cho biết tổng (hiệu) sau có chia hết cho 5 không.

a) 1 945 + 2 020           b) 1 954 – 1 930

Lời giải:

(1)

a) Số 1 954 có chữ số tận cùng là 4 nên chia hết cho 2; số 1 975 có chữ số tận cùng là 5 nên không chia hết cho 2.

Vậy tổng 1 954 + 1 975 không chia hết cho 2.

b) Số 2 020 có chữ số tận cùng là 0 nên chia hết cho 2; số 938 có chữ số tận cùng là 8 nên chia hết cho 2.

Vậy hiệu 2 020 - 938 chia hết cho 2.

(2) 

 

a) Số 1 945 có chữ số tận cùng là 5 nên chia hết cho 5; số 2 020 có chữ số tận cùng là 0 nên chia hết cho 5.

Vậy tổng 1 945 + 2 020 chia hết cho 5.

b) Số 1 954 có chữ số tận cùng là 4 nên không chia hết cho 5; số 1 930 có chữ số tận cùng là 0 nên chia hết cho 5.

Vậy hiệu 1 954 - 1 930 không chia hết cho 5.

Hoạt động 3 trang 35 Toán lớp 6 Tập 1: Cho các số 27; 82; 195; 234.

Hãy sắp xếp các số trên thành hai nhóm: Nhóm các số chia hết cho 9 và nhóm các số không chia hết cho 9.

Lời giải:

Ta có: 27: 9 = 3; 82 : 9 = 9 (dư 1); 195 : 9 = 21 (dư 6); 234 : 9 = 26

+) Các số chia hết cho 9 là: 27; 234

+) Các số không chia hết cho 9 là: 82; 195

Hoạt động 4 trang 35 Toán lớp 6 Tập 1Cho các số 27; 82; 195; 234.

Tính tổng các chữ số của mỗi số và xét tính chia hết cho 9 của các tổng đó trong mỗi nhóm.

Lời giải:

* Xét nhóm các số chia hết cho 9 là: 27; 234

+) Xét số 27 có tổng các chữ số là: 2 + 7 = 9, vì 9 ⁝ 9 nên (2 + 7) ⁝ 9

+) Xét số 234 có tổng các chữ số là: 2 + 3 + 4 = 9, vì 9 ⁝ 9 nên (2 + 3 + 4) ⁝ 9

* Xét nhóm các số không chia hết cho 9 là: 82; 195

+) Xét số 82 có tổng các chữ số là: 8 + 2 = 10, vì 10Cho các số 27; 82; 195; 234. Tính tổng các chữ số của mỗi số 9; nên (8 + 2)Cho các số 27; 82; 195; 234. Tính tổng các chữ số của mỗi số 9

+) Xét số 195 có tổng các chữ số là: 1 + 9 + 5 = 15, vì 159 nên (1 + 9 +5) Cho các số 27; 82; 195; 234. Tính tổng các chữ số của mỗi số 9

Luyện tập 2 trang 35 Toán lớp 6 Tập 1Thay dấu * bởi một chữ số để được số Thay dấu * bởi một chữ số để được số chia hết cho 9chia hết cho 9.

Lời giải:

Vì số Thay dấu * bởi một chữ số để được số chia hết cho 9 chia hết cho 9 thì tổng các chữ số của nó cũng chia hết cho 9 

Nên (1 + 2 + *) chia hết cho 9 hay (3 + *) chia hết cho 9

Vì * là chữ số hàng đơn vị của số Thay dấu * bởi một chữ số để được số chia hết cho 9 nên * ∈ N; 0 ≤ * ≤ 9

Vậy * là 6 ta được số 126.

Giải Toán lớp 6 trang 36 Tập 1

Vận dụng trang 36 Toán lớp 6 Tập 1: Trên một bờ đất dài 108m, một bác nông dân có kế hoạch trồng một số cây dừa thành một hàng sao cho hai cây cách đều nhau là 9m và luôn có cây ở vị trí đầu và cuối của bờ đất. Hỏi bác nông dân có trồng được như vậy không? Nếu được, bác cần bao nhiêu cây dừa để trồng?

Trên một bờ đất dài 108m, một bác nông dân có kế hoạch trồng một số cây dừa

Lời giải:

Ta thấy 108 có tổng các chữ số là 1 + 0 + 8 = 9 ⁝ 9 nên 108 ⁝ 9

Mà hai cây cách đều nhau 9m vì thế mà bác nông dân trồng được như vậy.

Vì cứ 2 cây dừa liên tiếp có 1 khoảng cách là 9m, 3 cây dừa liên tiếp có 2 khoảng cách,… nên số các khoảng cách giữa hai cây liên tiếp là: 

108 : 9 = 12 (khoảng cách)

Số cây dừa bác cần để trồng là:

12 + 1 = 13 (cây)

Vậy bác cần trồng 13 cây dừa.

Hoạt động 5 trang 36 Toán lớp 6 Tập 1Cho các số 42; 80; 191; 234.

Hãy sắp xếp các số trên thành hai nhóm: Nhóm các số chia hết cho 3 và nhóm các số không chia hết cho 3.

Lời giải:

Ta có: 42 : 3 = 14; 80 : 3 = 26 (dư 2); 191 : 3 = 63 (dư 2); 234 : 3 = 78

+) Các số chia hết cho 3 là: 42; 234

+) Các số không chia hết cho 3 là: 80; 191

Hoạt động 6 trang 36 Toán lớp 6 Tập 1: Cho các số 42; 80; 191; 234.

Tính tổng các chữ số của mỗi số và xét tính chia hết cho 3 của các tổng đó trong mỗi nhóm.

Lời giải:

*Xét nhóm các số chia hết cho 3 là: 42; 234

+) Xét số 42 có tổng các chữ số là: 4 + 2 = 6, vì 6 ⁝ 3 nên (4 + 2) ⁝ 3

+) Xét số 234 có tổng các chữ số là: 2 + 3 + 4 = 9, vì 9 ⁝ 3 nên (2 + 3+ 4 ) ⁝ 3

*Xét nhóm các số không chia hết cho 3 là: 80; 191

+) Xét số 80 có tổng các chữ số là: 8 + 0 = 8, vì 8 Cho các số 42; 80; 191; 234. Tính tổng các chữ số của mỗi số3 nên ( 8 +0 ) Cho các số 42; 80; 191; 234. Tính tổng các chữ số của mỗi số3

+) Xét số 191 có tổng các chữ số là: 1 + 9 + 1 = 11, vì 11 Cho các số 42; 80; 191; 234. Tính tổng các chữ số của mỗi số3 nên (1 + 9 + 1) Cho các số 42; 80; 191; 234. Tính tổng các chữ số của mỗi số3

Luyện tập 3 trang 36 Toán lớp 6 Tập 1: Thay dấu * bằng một chữ số để số Thay dấu * bằng một chữ số để số 12*5 chia hết cho 3 chia hết cho 3.

Lời giải:

Để Thay dấu * bằng một chữ số để số 12*5 chia hết cho 3 chia hết cho 3 thì tổng các chữ số của nó cũng chia hết cho 3 nên 

(1 + 2 + * + 5) chia hết cho 3 hay (8 + *) chia hết cho 3

Vì * là chữ số ở hàng chục của Thay dấu * bằng một chữ số để số 12*5 chia hết cho 3 nên * ∈ N; 0 ≤ * ≤ 9

Do đó: * ∈ {1;4;7}. Khi đó ta có các số: 1 215; 1 245; 1 275

Vậy * ∈ {1;4;7}.

Thử thách nhỏ trang 36 Toán lớp 6 Tập 1: Bạn Hà cần tìm đường đến siêu thị. Biết rằng Hà chỉ có thể đi qua ô có chứa số chia hết cho 2 hoặc chia hết cho 3 và mỗi ô chỉ đi qua một lần. Em hãy giúp Hà đến được siêu thị nhé.

Bạn Hà cần tìm đường đến siêu thị. Biết rằng Hà chỉ có thể đi qua

Lời giải:

Vì Hà chỉ có thể đi qua ô chứa số chia hết cho 2 hoặc 3 nên Hà không thể đi qua các ô số: 

5; 17; 19; 65; 77 vì các ô số này đều không chia hết cho 2 và 3.

Có nhiều cách để Hà đi đến siêu thị, dưới đây là 2 cách:

Cách 1: Hà → 21 → 15 → 2020 → 72 → 123 → 136 → 1245 → siêu thị

Cách 2: Hà → 12 → 6 → 21 → 15 → 2020 → 72 → 123 → 136 → 1245 → siêu thị

Bài tập

Giải Toán lớp 6 trang 37 Tập 1

Bài 2.10 trang 37 Toán lớp 6 Tập 1: Trong các số sau, số nào chia hết cho 2, số nào chia hết cho 5?

324; 248; 2 020; 2025.

Lời giải:

+) Vì các số 324; 248; 2 020 có chữ số tận cùng lần lượt là 4; 8; 0 nên 324; 248; 2 020 chia hết cho 2

+) Vì các số 2 020; 2025 có chữ số tận cùng lần lượt là 0 và 5 nên 2 020; 2025 chia hết cho 5.

Bài 2.11 trang 37 Toán lớp 6 Tập 1Trong các số sau, số nào chia hết cho 3, số nào chia hết cho 9?

450 ; 123 ; 2 019 ; 2 025.

Lời giải:

+) Xét số 450 có tổng các chữ số 4 + 5 + 0 = 9, vì 9 ⁝ 3 và 9 ⁝ 9 nên 450 ⁝ 3 và 450 ⁝ 9.

+) Xét số 123 có tổng các chữ số 1 + 2 + 3 = 6, vì 6 ⁝ 3 và 6Trong các số sau, số nào chia hết cho 3, số nào chia hết cho 9. 450; 1239 nên 123 ⁝ 3 và 123Trong các số sau, số nào chia hết cho 3, số nào chia hết cho 9. 450; 1239

+) Xét số 2 019 có tổng các chữ số 2 + 0 + 1 + 9 = 12, vì 12 ⁝ 3 và 12Trong các số sau, số nào chia hết cho 3, số nào chia hết cho 9. 450; 1239 nên 2 019 ⁝ 3 và

2 019Trong các số sau, số nào chia hết cho 3, số nào chia hết cho 9. 450; 1239

+) Xét số 2 025 có tổng các chữ số 2 + 0 + 2 + 5 = 9, vì 9 ⁝ 3 và 9 ⁝ 9 nên 2 025 ⁝ 3 và 20 25 ⁝ 9

2 025 ⁝ 9.

Vậy các số chia hết cho 3 là: 450; 123; 2 019; 2 025

        các số chia hết cho 9 là: 450; 2 025.

Bài 2.12 trang 37 Toán lớp 6 Tập 1: Khối lớp 6 của một trường có 290 học sinh đi dã ngoại. Cô phụ trách muốn chia đều số học sinh của khối 6 thành 9 nhóm. Hỏi cô chia nhóm được như vậy không?

Lời giải:

Tổng các chữ số của số 290 là 2 + 9 + 0 =11 không chia hết cho 9 nên 290 không chia hết cho 9. Do đó mà cô không thể chia đều 290 học sinh đi dã ngoại thành 9 nhóm.

Vậy không thể chia đều số học sinh của khối 6 thành 9 nhóm.

Bài 2.13 trang 37 Toán lớp 6 Tập 1: Có 162 học sinh tham gia chương trình đào tạo bóng đá, được chia thành các đội. Mỗi đội cần có 9 học sinh. Hỏi có đội nào không đủ 9 học sinh hay không?

Lời giải:

Tổng các chữ số của 162 là 1 + 6 + 2 = 9 chia hết cho 9 nên 162 chia hết cho 9. Do đó chia 162 em học sinh thành các đội, thì không có đội nào không đủ 9 học sinh.

Bài 2.14 trang 37 Toán lớp 6 Tập 1Thay dấu * bởi một chữ số để số Thay dấu * bởi một chữ số để số 345* để a) chia hết cho 2 b) chia hết cho 3 :

a) Chia hết cho 2

b) Chia hết cho 3

c) Chia hết cho 5

d) Chia hết cho 9.

Lời giải:

Điều kiện * ∈ N, 0 ≤ * ≤ 9

a) Số Thay dấu * bởi một chữ số để số 345* để a) chia hết cho 2 b) chia hết cho 3 chia hết cho 2 thì nó phải có tận cùng là chữ số chẵn nên * ∈ {0;2;4;6;8}

Vậy có thể thay * bằng các chữ số: 0; 2; 4; 6; 8

b) Số Thay dấu * bởi một chữ số để số 345* để a) chia hết cho 2 b) chia hết cho 3  chia hết cho 3 thì tổng các chữ số của nó cũng chia hết cho 3.

Do đó 3 + 4 + 5 + * = 12 + * chia hết cho 3.

Mà 12 chia hết cho 3 nên * cũng phải chia hết cho 3 nên * ∈ {0;3;6;9}

Vậy có thể thay * bằng các chữ số: 0; 3; 6; 9

c) Số Thay dấu * bởi một chữ số để số 345* để a) chia hết cho 2 b) chia hết cho 3  chia hết cho 5 thì nó phải có tận cùng là 0 hoặc 5 nên * ∈ {0;5}

Vậy có thể thay * bằng các chữ số: 0 ; 5

d) Số Thay dấu * bởi một chữ số để số 345* để a) chia hết cho 2 b) chia hết cho 3 chia hết cho 9 thì tổng các chữ số của nó cũng chia hết cho 9

Do đó 3 + 4 + 5 + * = 12 + * chia hết cho 9 nên * ∈ {6}

Vậy có thể thay * bằng chữ số 6.

Bài 2.15 trang 37 Toán lớp 6 Tập 1: Dùng 3 chữ số 3, 0, 4 hãy viết các số tự nhiên có ba chữ số khác nhau và thỏa mãn một trong hai điều kiện:

a) Các số đó chia hết cho 2

b) Các số đó chia hết cho 5

Lời giải:

a) Vì số cần tìm là số tự nhiên chia hết cho 2 nên số cần tìm có chữ số tận cùng là 0 hoặc 4. 

+) Với chữ số tận cùng là 0 và có ba chữ số khác nhau ta được số cần tìm là: 340; 430.

+) Với chữ số tận cùng là 4, chữ số 0 không thể đứng đầu nên số 0 ở hàng chục và số tự nhiên có ba chữ số khác nhau nên ta được số cần tìm là: 304

Vậy các số chia hết cho 2 là:  304; 340; 430.

b) Vì số cần tìm là số tự nhiên chia hết cho 5 nên số cần tìm có chữ số tận cùng là 0. 

Vì số tự nhiên có ba chữ số khác nhau nên ta viết được các số: 340; 430

Vậy các số chia hết cho 5:  340; 430.

Bài 2.16 trang 37 Toán lớp 6 Tập 1: Từ các chữ số 5, 0, 4, 2 viết các số tự nhiên có ba chữ số khác nhau sao cho mỗi số đó chia hết cho 3.

Lời giải:

5 + 4 + 0 = 9 

4 + 2 + 0 = 6

Bộ ba chữ số khác nhau có tổng của chúng chia hết cho 3 là: (5; 4; 0) và (4; 2; 0)

+) Với bộ ba chữ số (5; 4; 0) ta được các số tự nhiên có ba chữ số khác nhau là: 504; 540; 405; 450

+) Với bộ ba chữ số (2; 4; 0) ta được các số tự nhiên có ba chữ số khác nhau là: 420; 402; 240; 204.

Vậy các số cần tìm là: 504; 540; 405; 450; 420; 402; 240; 204.

 

Bài giảng Toán 6 Bài 9: Dấu hiệu chia hết - Kết nối tri thức

Xem thêm các bài giải SGK Toán lớp 6 Kết nối tri thức hay, chi tiết khác:

Bài 8: Quan hệ chia hết và tính chất

Bài 10: Số nguyên tố

Luyện tập chung trang 43

Bài 11: Ước chung. Ước chung lớn nhất

Lý thuyết Quan hệ chia hết và tính chất 

1. Quan hệ chia hết

Cho hai số tự nhiên a và b (b ≠ 0). 

Nếu có số tự nhiên k sao cho a = kb thì ta nói a chia hết cho b kí hiệu là a Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  b.

Nếu a không chia hết cho b ta kí hiệu là a Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  b.

Ví dụ 1. Tìm kí hiệu thích hợp ( Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thứcQuan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức)   điền vào chỗ trống:

a) 12 Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  2;                               b) 105 Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  5;                                      c) 26 Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  4.

Lời giải

a) Ta có 12 = 2.6 nên 12 chia hết cho 2 ta viết 12 Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức   2.

b) Ta có 105 = 5.21 nên 105 chia hết cho 5 ta viết 105 Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  5.

c) Ta có 26 không chia hết cho 4 nên ta viết 26Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức 4.

+ Ước và bội:

Nếu a chia hết cho b, ta nói b là ước của a và a là bội của b.

Ta kí hiệu Ư(a) là tập hợp các ước của a và B(b) là tập hợp các bội của b.

Ví dụ 2. Khẳng định sau đây đúng hay sai?

a) 20 chia hết cho 5, 5 là ước của 20 và 20 là bội của 5.

b) 14 chia hết cho 3, 3 là ước của 14 và 14 là bội của 3.

c) 36 chia hết cho 9, 36 là ước của 9 và 9 là bội của 36.

Lời giải

a) Khẳng định a) đúng.

b) Vì 14 không chia hết cho 3 nên khẳng định b sai.

c) 36 chia hết cho 9 là đúng, trong đó 9 là ước của 36 và 36 là bội của 9 nên c sai.

+ Cách tìm ước và bội:

Muốn tìm các ước của a (a > 1), ta lần lượt chia a cho các số tự nhiên từ 1 đến a để xem a chia hết cho những số nào thì các số đó là ước của a.

Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lượt với 0; 1; 2; 3; …

Ví dụ 3. 

a) Hãy tìm tất cả các ước của 12.

b) Hãy tìm tất cả các bội của 8 nhỏ hơn 60.

Lời giải

a) Lần lượt chia 12 cho các số từ 1 đến 12, ta thấy 12 chia hết cho 1; 2; 3; 4; 6; 12 nên Ư(12) = {1; 2; 3; 4; 6; 12}.

b) Lần lượt nhân 8 với 0; 1; 2; 3; 4; 5; … ta được các bội của 8 là: 0; 8; 16; 24; 32; 40; 48; 56; 64; …

Các bội nhỏ hơn 60 của 8 là: 0; 8; 16; 24; 32; 40; 48; 56.

2. Tính chất chia hết của một tổng

+ Tính chất 1

Nếu tất cả các số hạng của một tổng đều chia hết cho cùng một số thì tổng chia hết cho số đó.

- Nếu a Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  m và b Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  m thì (a + b) Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  m.

- Nếu a Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  m, b Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  m và c Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  m thì (a + b + c) Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  m.

Ví dụ 4. Không thực hiện phép tính, hãy cho biết:

a) 20 + 15 có chia hết cho 5 không. Vì sao?

b) 72 + 18 – 12 có chia hết cho 3 không. Vì sao?

Lời giải

a) Ta có 20 Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức 5 và 15 Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  5 nên theo tính chất 1 thì tổng (20 + 15) Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  5.

b) Ta có 72 Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức 3, 18 Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức 3 và 12 Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức 3 nên theo tính chất 1 thì tổng (72 + 18 – 12)Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  3.

+ Tính chất 2 

Nếu có một số hạng của một tổng không chia hết cho một số đã cho, các số hạng còn lại đều chia hết cho số đó thì tổng không chia hết cho số đã cho.

- Nếu a Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức m và b Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức m thì (a + b) Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thứcm  .

- Nếu a Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức m, b m và c Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức m thì (a + b + c) Quan hệ chia hết và tính chất | Lý thuyết Toán lớp 6 chi tiết Kết nối tri thức  m.

Chú ý: Hai số không chia hết cho một số đã cho thì chưa chắc tổng của chúng không chia hết cho số đó.

Ví dụ 5. Các phát biểu sau đúng hay sai? 

a) 219.7 + 12 chia hết cho 7.

b) 2.3.4.11 + 22 + 45 không chia hết cho 11.

c) 8.12 + 9 chia hết cho 5.

Lời giải

a) Vì 219.7 là tích của 7 với số 219 nên chia hết cho 7 nhưng 12 không chia hết cho 7 nên 219.7 + 12   không chia hết cho 7. Do đó a sai.

b) Vì 2.3.4.11 là tích của 11 với các số 2; 3; 4 nên chia hết cho 11, 22 cũng chia hết cho 11 nhưng 45 không chia hết cho 11 nên 2.3.4.11 + 22 + 45 không chia hết cho 11. Do đó b đúng.

c) Ta có 8.12 không chia hết cho 5, 9 cũng không chia hết cho 5 nhưng tổng 8.12 + 9 = 105 lại chia hết cho 5. Do đó c đúng.

Tài liệu có 9 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống