Với giải bài tập Toán lớp 6 Bài 11: Ước chung. Ước chung lớn nhất chi tiết bám sát nội dung sgk Toán 6 Tập 1 Kết nối tri thức với cuộc sống giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 6. Mời các bạn đón xem:
Giải bài tập Toán lớp 6 Bài 11: Ước chung. Ước chung lớn nhất
Video giải Toán 6 Bài 11: Ước chung. Ước chung lớn nhất - Kết nối tri thức
Trả lời câu hỏi giữa bài
Giải Toán lớp 6 trang 44 Tập 1
Hoạt động 1 trang 44 Toán lớp 6 Tập 1: Tìm các tập hợp Ư(24) và Ư(28).
Lời giải:
+) Vì 24 chia hết cho các số: 1; 2; 3; 4; 6; 8; 12; 24
Do đó: Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}.
+) Vì 28 chia hết cho các số: 1; 2; 4; 7; 14; 28
Do đó: Ư(28) = {1; 2; 4; 7; 14; 28}.
ƯC(24, 28).
Lời giải:
Ta có: Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
Ư(28) = {1; 2; 4; 7; 14; 28}
Các số vừa là ước của 24, vừa là ước của 28 là: 1; 2; 4.
Vậy ƯC(24; 28) = {1; 2; 4}.
Hoạt động 3 trang 44 Toán lớp 6 Tập 1: Tìm số lớn nhất trong tập ƯC(24, 28).
Lời giải:
Ta có: ƯC(24; 28) = {1; 2; 4}
Số lớn nhất trong ƯC(24; 28) là 4.
Giải Toán lớp 6 trang 45 Tập 1
Câu hỏi 1 trang 45 Toán lớp 6 Tập 1: Tìm ƯCLN(90, 10).
Lời giải:
Vì 90 10 nên ta có ƯCLN(90, 10) = 10.
Lời giải:
Ta có: 12 3, 15 3 hay 3 ∈ Ư(12); 3 ∈ Ư(15)
Nên 3 ∈ ƯC(12; 15) do đó bố chia được số bóng cho ba anh em Việt, Hà và Nam đều như nhau gồm cả bóng màu xanh và bóng màu đỏ.
Vậy bố có thể thực hiện phép chia này.
a) Có thể chia được thành bao nhiêu nhóm học sinh?
b) Có thể chia nhiều nhất bao nhiêu nhóm học sinh?
Lời giải:
a) Để số học sinh nam và nữ trong các nhóm đều bằng nhau nên số nhóm chính là ước chung của 36 và 40
Gọi x là số nhóm học sinh chia được (nhóm)
Ư(36) = {1; 2; 3; 4; 6; 9; 12; 18; 36}
Ư(40) = {1; 2; 4; 5; 8; 10; 20; 40}
Do đó ƯC(36; 40) = {1; 2; 4}
Số học sinh nam và nữ trong mỗi nhóm được cho như bảng dưới đây:
Số nhóm |
Số nam |
Số nữ |
1 |
36 : 1 = 36 |
40 : 1 = 40 |
2 |
36 : 2 = 18 |
40 : 2 = 20 |
4 |
36 : 4 = 9 |
40 : 4 = 10 |
Vậy có thể chia được 1 nhóm; 2 nhóm hoặc 4 nhóm.
b) Số nhóm chia được nhiều nhất là ƯCLN(36; 40)
Vì ƯC(36; 40) = {1; 2; 4} nên ƯCLN(36; 40) = 4.
Vậy có thể chia nhiều nhất 4 nhóm học sinh.
Giải Toán lớp 6 trang 46 Tập 1
Câu hỏi 2 trang 46 Toán lớp 6 Tập 1: Tìm ƯCLN(45, 150) biết 45 = 32.5 và 150 = 2.3.52 .
Lời giải:
+) Phân tích các số 45, 150 ra thừa số nguyên tố:
45 = 32.5
150 = 2.3.52
+) Các thừa số nguyên tố chung là: 3; 5
+) Số mũ nhỏ nhất của 3 là 1 và số mũ nhỏ nhất của 5 là 1 nên
ƯCLN(45, 150) = 3. 5 = 15
Vậy ƯCLN(45, 150) = 3. 5 = 15.
Luyện tập 2 trang 46 Toán lớp 6 Tập 1: Tìm ƯCLN(36, 84).
Lời giải:
Phân tích các số 36 và 84 ra thừa số nguyên tố ta được:
36= 22.32; 84 = 22.3.784;
Ta thấy 2 và 3 là các thừa số nguyên tố chung của 36 và 84. Số mũ nhỏ nhất của 2 là 2, số mũ nhỏ nhất của 3 là 1 nên ƯCLN(36, 84) = 22.3 = 12
Vậy ƯCLN(36, 84) = 12.
Lời giải:
Vì trong cuộc diễu binh, cả ba trung đội phải xếp thành các hàng dọc đều nhau mà không có chiến sĩ nào trong mỗi trung đội bị lẻ hàng nên số hàng dọc là ƯC(24; 28; 36).
Mặt khác để xếp được nhiều nhất số hàng dọc thì số hàng dọc là ƯCLN(24; 28; 36)
Ta có:
24 = 23.3
28 = 22.7
36 = 22.32
Ta thấy 2 là thừa số nguyên tố chung của 24; 28 và 36. Số mũ nhỏ nhất của 2 là 2 nên ƯCLN(24; 28; 36) = 22 = 4
Vậy có thể xếp được nhiều nhất 4 hàng dọc.
Câu hỏi 3 trang 46 Toán lớp 6 Tập 1: Biết ƯCLN(75; 105) = 15, hãy tìm ƯC(75, 105).
Lời giải:
Vì ƯCLN(75; 105) = 15 nên ƯC(75, 105) = Ư(15) = {1; 3; 5; 15}
Vậy ƯC(75, 105) = {1; 3; 5; 15}.
Giải Toán lớp 6 trang 47 Tập 1
a) Hỏi số tiền để mua một vé (giá vé được tính theo đơn vị nghìn đồng) có thể là bao nhiêu, biết giá vé lớn hơn 2000 đồng?
b) Có bao nhiêu học sinh tham gia chuyến đi, biết số học sinh trong lớp khoảng từ 20 đến 40 người.
Ngày |
Số tiền đóng (đồng) |
Thứ hai |
56 000 |
Thứ Ba |
28 000 |
Thứ Tư |
42 000 |
Thứ Năm |
98 000 |
Lời giải:
a) Vì mỗi em mua một vé nên giá vé tính theo nghìn đồng chính là
ƯC(56 000; 28 000; 42 000; 98 000)
Ta có: 56 000 = 26.53.7
28 000 = 25.53.7
42 000 = 24.3.53.7
98 000 = 24.53.72
Ta thấy 2; 5 và 7 là các thừa số nguyên tố chung của 56 000; 28 000; 42 000; 98 000. Số mũ nhỏ nhất của 2 là 4, số mũ nhỏ nhất của 5 là 3, số mũ nhỏ nhất của 7 là 1 nên
ƯCLN (56 000; 28 000; 42 000; 98 000) = 24.53.7 = 14 000
ƯC(56 000; 28 000; 42 000; 98 000) = Ư(14 000)
Do giá vé tính theo đơn vị nghìn đồng nên giá vé chỉ có thể là: 1 000; 2 000; 7 000 đồng.
Mà giá vé lớn hơn 2000 đồng nên giá vé là 7 000 đồng.
b) Tổng số tiền cô Lan thu được thừ thứ Hai đến thứ Năm là:
56 000 + 28 000 + 42 000 + 98 000 = 224 000 (đồng)
Số học sinh tham gia chuyến đi là:
224 000 : 7 000 = 32 (học sinh)
Vậy giá vé là 7 000 đồng và có 32 học sinh tham gia chuyến đi.
Lời giải:
Ta có: 16 = 24 ; 10 = 2.5
+) Thừa số nguyên tố chung là: 2 với số mũ nhỏ nhất là 2 nên ƯCLN(16, 10) = 2
Do đó phân số chưa là phân số tối giản nên:
. Ta có là phân số tối giản vì ƯCLN(8, 5) = 1.
Giải Toán lớp 6 trang 48 Tập 1
Luyện tập 3 trang 48 Toán lớp 6 Tập 1: Rút gọn về phân số tối giản:
a) b)
Lời giải:
a) Ta có: 90 = 2.33.5; 27 = 33
+) Thừa số nguyên tố chung là: 3 với số mũ nhỏ nhất là 2 nên ƯCLN(90, 27) = 32 = 9
Do đó không là phân số tối giản.
Ta có . Ta được là phân số tối giản vì ƯCLN(10, 3) = 1.
b) Ta có: 50 = 2.52 ; 125 = 53
+) Thừa số nguyên tố chung là: 5 với số mũ nhỏ nhất là 2 nên ƯCLN(50, 125) = 52 = 25
Do đó không là phân số tối giản
Ta có . Ta được là phân số tối giản vì ƯCLN(2, 5) = 1.
Bài tập
Bài 2.30 trang 48 Toán lớp 6 Tập 1: Tìm tập hợp ước chung của:
a) 30 và 45;
b) 42 và 70.
Lời giải:
a) Phân tích các số 30 và 45 ra thừa số nguyên tố:
30 = 2.3.5; 45 = 32.5
+) Ta chọn ra các thừa số nguyên tố chung là: 3 và 5.
+) Số mũ nhỏ nhất của 3 là 1, số mũ nhỏ nhất của 5 là 1. Khi đó:
ƯCLN(30, 45) = 3.5 = 15. Ta được ƯC(30; 45) = Ư(15) = {1; 3; 5; 15}
Vậy ƯC(30; 45) = {1; 3; 5; 15}.
b) Phân tích các số 42 và 70 ra thừa số nguyên tố:
42 = 2.3.7; 70 = 2.5.7;
+) Ta chọn ra các thừa số nguyên tố chung là: 2 và 7.
+) Số mũ nhỏ nhất của 2 là 1, số mũ nhỏ nhất của 7 là 1. Khi đó:
ƯCLN(42, 70) = 2.7 = 14. Ta được ƯC(42; 70) = Ư(14) = {1; 2; 7; 14}
Vậy ƯC(42; 70) = {1; 2; 7; 14}.
Bài 2.31 trang 48 Toán lớp 6 Tập 1: Tìm ƯCLN của hai số:
a) 40 và 70;
b) 55 và 77.
Lời giải:
a) Phân tích các số 40 và 70 ra thừa số nguyên tố ta được:
40 = 23.5; 70 = 2.5.7
Ta thấy 2 và 5 là các thừa số nguyên tố chung của 40 và 70. Số mũ nhỏ nhất của 2 là 1, số mũ nhỏ nhất của 5 là 1 nên ƯCLN(40, 70) = 2. 5 = 10
Vậy ƯCLN(40, 70) = 10.
b) Phân tích các số 55 và 77 ra thừa số nguyên tố ta được:
55 = 5. 11; 77 = 7. 11
Ta thấy 11 thừa số nguyên tố chung của 55 và 77. Số mũ nhỏ nhất của 11 là 1 nên ƯCLN(55, 77) = 11
Vậy ƯCLN(40, 70) = 11.
Bài 2.32 trang 48 Toán lớp 6 Tập 1: Tìm ƯCLN của:
a) 22.5 và 2. 3. 5;
b) 24.3; 22.32.5 và 24.11
Lời giải:
a) 22.5 và 2. 3. 5
Ta thấy 2 và 5 là thừa số nguyên tố chung. Số mũ nhỏ nhất của 2 là 1 và số mũ nhỏ nhất của 5 là 1 nên
ƯCLN cần tìm là 2.5 = 10.
b) 24.3; 22.32.5 và 24.11
Ta thấy 2 là thừa số nguyên tố chung. Số mũ nhỏ nhất của 2 là 2 nên
ƯCLN cần tìm là 22 = 4
Bài 2.33 trang 48 Toán lớp 6 Tập 1: Cho hai số a = 72 và b = 96
a) Phân tích a và b ra thừa số nguyên tố;
b) Tìm ƯCLN(a, b), rồi tìm ƯC(a, b).
Lời giải:
a) Phân tích a và b ra thừa số nguyên tố
Ta có:
Do đó: a = 72 = 23.32.
Lại có:
Vậy b = 96 = 25.3.
b) Ta thấy 2 và 3 là các thừa số chung của 70 và 96. Số mũ nhỏ nhất của 2 là 3 và số mũ nhỏ nhất của 3 là 1 nên
ƯCLN(72; 96) = 23 . 3 = 24
ƯC(a, b) = Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}.
a) ; b) .
Lời giải:
a) Ta có:
50 = 2.52; 85 = 5.17
+) Thừa số nguyên tố chung là 5 với số mũ nhỏ nhất là 1 nên ƯCLN(50, 85) = 5.
Do đó không là phân số tối giản.
. Ta được là phân số tối giản vì ƯCLN(10, 17) = 1.
b) Ta có:
23 = 23; 81 = 34
Nên 23 và 81 không có thừa số nguyên tố chung nên ƯCLN(23, 81) = 1.
Do đó là phân số tối giản.
Lời giải:
Có nhiều ví dụ về hai số có ƯCLN bằng 1 mà cả hai đều là hợp số, chẳng hạn ta có hai ví dụ sau:
+) 6 và 35
Vì 6 = 2.3; 35 = 5.7. Hai số này không có thừa số nguyên tố chung nên ƯCLN bằng 1 nhưng 6 chia hết cho 2 nên 6 là hợp số; 35 chia hết cho 5 nên 35 là hợp số.
+) 10 và 27
Vì 10 = 2.5; 27 = 33. Hai số này không có thừa số nguyên tố chung nên ƯCLN bằng 1 nhưng 10 chia hết cho 2 nên 10 là hợp số; 27 chia hết cho 3 nên 27 là hợp số.
Lý thuyết Ước chung. Ước chung lớn nhất
1. Ước chung và ước chung lớn nhất
Ước chung của hai hay nhiều số là ước của tất cả các số đó.
Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó.
Ta kí hiệu:
ƯC(a, b) là tập hợp các ước chung của a và b.
ƯCLN(a, b) là ước chung lớn nhất của a và b.
Ví dụ 1.
a) Tìm ước chung của 24 và 60.
b) Tìm ƯCLN (24; 60).
Lời giải
Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
Ư (30) = {1; 2; 3; 5; 6; 10; 15; 30}
a) ƯC(24; 30) = {1; 2; 3; 6}
b) ƯCLN(24; 30) = 6.
Nhận xét:
- Trong các số đã cho, nếu số nhỏ nhất là ước của các số còn lại thì ƯCLN của các số đã cho chính là số nhỏ nhất ấy.
Nếu a b thì ƯCLN(a, b) = b.
- Số 1 chỉ có 1 ước là 1. Do đó với mọi số tự nhiên a và b, ta có:
ƯCLN(a, 1) = 1; ƯCLN(a, b, 1) = 1.
Ví dụ 2.
a) Tìm ƯCLN(180, 18)
Vì 180 18 nên ƯCLN(180, 18) = 18.
b) Tìm ƯCLN(13, 1)
Ta có: ƯCLN(13, 1) = 1.
2. Cách tìm ước chung lớn nhất
Các bước tìm ƯCLN của hai hay nhiều số lớn hơn 1:
Bước 1: Phân tích các số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung.
Bước 3. Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất. Tích đó là ƯCLN phải tìm.
Ví dụ 3. Cách tìm ƯCLN(140, 168)
Ta có: 140 = 22.5.7; 168 = 23.3.7.
Các thừa số chung: 2, 7.
Vậy ƯCLN(140, 168) = 22.7 = 4.7 = 28.
3. Rút gọn về phân số tối giản
Vận dụng ƯCLN để rút gọn về phân số tối giản
Ta rút gọn phân số bằng cách chia cả tử và mẫu của phân số đó cho một ước chung khác 1 (nếu có).
Phân số được gọi là phân số tối giản nếu a và b không có ước chung nào khác 1, nghĩa là ƯCLN(a, b) = 1.
Ví dụ 4. Rút gọn các phân số sau về phân số tối giản
Lời giải
a) ƯCLN(12, 46) = 2.
Để rút gọn phân số ta chia cả tử và mẫu cho ƯCLN của 12 và 46, ta được:
;
b) ƯCLN(35,45) = 5.
Để rút gọn phân số ta chia cả tử và mẫu cho ƯCLN của 35 và 45, ta được:
;
c) ƯCLN(102, 54) = 6.
Để rút gọn phân số ta chia cả tử và mẫu cho ƯCLN của 102 và 54, ta được:
Bài giảng Toán 6 Bài 11: Ước chung. Ước chung lớn nhất - Kết nối tri thức
Xem thêm các bài giải SGK Toán lớp 6 Kết nối tri thức hay, chi tiết khác:
Bài 12: Bội chung. Bội chung nhỏ nhất