A. Cho hai vectơ không cùng phương và . Khi đó ba vectơ đồng phẳng khi và chỉ khi có cặp số m, n là duy nhất.
B. Nếu có và một trong ba số m, n, p khác 0 thì ba vectơ đồng phẳng.
C. Ba vectơ đồng phẳng khi và chỉ khi ba vectơ đó cùng có giá thuộc một mặt phẳng.
D. Ba tia vuông góc với nhau từng đôi một thì ba tia đó không đồng phẳng.
Chọn đáp án C
C sai vì chỉ cần ba vectơ có giá cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.
a) Chứng minh
Cho tứ diện ABCD. Gọi M và N lần lượt là các điểm trên các cạnh AD và BC sao cho . Chứng minh ba vectơ đồng phẳng.
Cho hình hộp ABCD.A'B'C'D'. Gọi G, G' lần lượt là trọng tâm của các tam giác . Chứng minh các điểm thẳng hàng.
Cho hình lăng trụ tam giác ABC.A'B'C' có . Hãy phân tích các vectơ qua các vectơ .
Trong không gian cho ba vectơ . Cho các khẳng định sau.
(1) Nếu các vectơ đồng phẳng thì các vectơ thuộc một mặt phẳng nào đó.
(2) Nếu các vectơ đồng phẳng thì ba vectơ cùng phương.
(3) Nếu tồn tại hai số thực m, n sao cho thì các vectơ đồng phẳng.
(4) Nếu các vectơ đồng phẳng thì giá của chúng song song với mặt phẳng nào đó.
Có bao nhiêu khẳng định đúng?