Cho góc α thỏa mãn: 3cosα+ 2sinα = 2 và sinα < 0. Tính sinα
Chọn A.
Ta có 3cosα+ 2sinα = 2 hay (3cosα+ 2sinα = 2 )2 = 4
Tương đương: 9 cos2 α + 12 cosα .sin α + 4sin2α = 4
Hay 5cos2α + 12 cosα .sin α = 0
Từ đó: cosα= 0 hoặc 5cosα + 12 sinα = 0
+ Nếu cosα = 0 thì sinα =1: loại ( vì sinα < 0).
+ 5cosα + 12 sinα = 0
ta có hệ phương trình
SỐ ĐO CỦA CUNG VÀ GÓC LƯỢNG GIÁC
1. Độ và radian
a) Đơn vị radian
Trên đường tròn tùy ý, cung có độ dài bằng bán kính được gọi là cung có số đo 1 rad.
b) Quan hệ giữa độ và radian
c) Độ dài của một cung tròn
Trên đường tròn bán kính R, cung nửa đường tròn có số đo là π rad và có độ dài là πR. Vậy cung có số đo α rad của đường tròn bán kính R có độ dài
l = Rα.
2. Số đo của một cung lượng giác
Số đo của một cung lượng giác (A ≠ M) là một số thực âm hay dương.
Kí hiệu số đo của cung là sđ
.
Ghi nhớ
Số đo của các cung lượng giác có cùng điểm đầu và điểm cuối sai khác nhau một bội của 2π.
Ta viết
sđ = α + k2π , k ∈ Z
trong đó α là số đo của một cung lượng giác tùy ý có điểm đầu là A, điểm cuối là M
3. Số đo của một góc lượng giác
Số đo của góc lượng giác (OA, OC) là số đo của cung lượng giác tương ứng.
Chú ý Vì mỗi cung lượng giác ứng với một góc lượng giác và ngược lại, đồng thời số đo của các cung và góc lượng giác tương ứng là trùng nhau, nên từ nay về sau khi ta nói về cung thì điều đó cũng đúng cho góc và ngược lại.
4. Biểu diễn cung lượng giác trên đường tròn lượng giác
Chọn điểm gốc A(1; 0) làm điểm đầu của tất cả các cung lượng giác trên đường tròn lượng giác. Để biểu diễn cung lượng giác có số đo α trên đường tròn lượng giác ta cần chọn điểm cuối M của cung này. Điểm cuối M được xác định bởi hệ thức sđ = α
Xem thêm một số kiến thức liên quan:
315 bài tập trắc nghiệm cung và góc lượng giác, công thức lượng giác
Cho góc α thỏa mãn tanα = 2 và 1800< α < 2700 . Tính P = cosα + sinα
Cho hai góc nhọn a và b với tan a = 1/7 và tan b = 3/4. Tính tổng 2 góc đó?
Cho x và y là các góc nhọn, cotx = 3/4, cot y = 1/7. Tổng 2 góc đó là:
Rút gọn biểu thức C = 2( sin4x + cos4x + sin2x.cos2x) 2 - ( sin8x + cos8x) có giá trị không đổi và bằng
Cho A; B: C là ba góc của một tam giác không vuông. Hệ thức nào sau đây sai?
Cho A ; B; C là ba góc của một tam giác . Hãy chỉ ra hệ thức sai
Rút gọn biểu thức A = cos2( x - a) + cos2x - 2cos a.cos x.cos( a - x).
Cho A; B; C là ba góc của một tam giác. Hãy chỉ ra hệ thức sai
Cho biểu thức: A = sin2(a + b) – sin2a - sin2b. Đưa biểu thức trên về dạng tích: