Biện luận theo tham số m số nghiệm của phương trình: .
Giải bởi Vietjack
Ta có:
Số nghiệm của phương trình (*) chính bằng số giao điểm của đồ thị (C) và đường thẳng (d) y = m/2.
Từ đồ thị (C) nhận thấy :
+ m/2 < - 3 ⇔ m < -6
⇒ đường thẳng (d) không cắt đồ thị (C)
⇒ Phương trình vô nghiệm.
+ m/2 = -3 ⇔ m = -6
⇒ đường thẳng (d) cắt đồ thị (C) tại hai điểm cực tiểu
⇒ Phương trình có 2 nghiệm.
+ -3 < m/2 < 3/2 ⇔ -6 < m < 3
⇒ đường thẳng (d) cắt (C) tại 4 điểm phân biệt
⇒ Phương trình có 4 nghiệm.
+ m/2 = 3/2 ⇔ m = 3
⇒ đường thẳng (d) cắt (C) tại ba điểm
⇒ phương trình có 3 nghiệm.
+ m/2 > 3/2 ⇔ m > 3
⇒ đường thẳng (d) cắt (C) tại hai điểm
⇒ phương trình có hai nghiệm phân biệt.
Vậy:
+) m < - 6 thì phương trình vô nghiệm.
+) m = - 6 hoặc m > 3 thì PT có 2 nghiệm.
+) m = 3 thì PT có 3 nghiệm.
+) – 6 < m < 3 thì PT có 4 nghiệm.
Cho hàm số: (m là tham số).
Xác định m để hàm số đồng biến trên tập xác định.
Cho hàm số
Chứng minh rằng với mọi giá trị của tham số m, hàm số luôn đồng biến trên khoảng xác định của nó.
Cho hàm số
Viết phương trình tiếp tuyến (C) tại điểm có tung độ bằng 7/4.
Dựa vào đồ thị (C), biện luận số nghiệm phương trình sau theo m:
Viết phương trình đường thẳng đi qua điểm cực đại và điểm cực tiểu của đồ thị (C).
Cho hàm số
Xác định m để tiệm cận đứng của đồ thị đi qua A(-1, )
Nêu cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm. Tìm các cực trị của hàm số:
Cho hàm số
Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 1.
Cho hàm số có đồ thị là , m là tham số.
Chứng minh rằng luôn cắt trục hoành tại hai điểm phân biệt với mọi m.
Chứng minh rằng với mọi giá trị của đường thẳng y = 2x + m luôn cắt (C) tại hai điểm phân biệt M và N.