Lý thuyết Tập hợp, Phần tử của tập hợp (Chân trời sáng tạo 2024) hay, chi tiết | Toán lớp 6

4.7 K

Với tóm tắt lý thuyết Toán lớp 6 Bài 1: Tập hợp, Phần tử của tập hợp sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 6.

Lý thuyết Toán lớp 6 Bài 1: Tập hợp, Phần tử của tập hợp

Video giải Toán 6 Bài 1: Tập hợp, Phần tử của tập hợp - Chân trời sáng tạo

A. Lý thuyết Tập hợp, Phần tử của tập hợp

1. Tập hợp, phần tử

Một tập hợp (gọi tắt là tập) bao gồm những đối tượng nhất định, những đối tượng đó được gọi là những phần tử của tập hợp mà ta nhắc đến.

Mối quan hệ giữa tập hợp và phần tử: Tập hợp chứa phần tử (nếu có) và phần tử nằm trong tập hợp.

Tập hợp là khái niệm cơ bản thường dùng trong toán học và cuộc sống. Ta hiểu tập hợp thông qua các ví dụ.

Ví dụ:

a) Tập hợp các bạn nữ trong lớp 6A bao gồm tất cả các bạn nữ của lớp 6A.

Đối tượng của tập hợp này là các bạn nữ của lớp 6A. Mỗi một bạn là một phần tử.

b) Tập hợp các số nhỏ hơn gồm tất cả các số nhỏ hơn 6, đó là 0; 1; 2; 3; 4; 5.

Mỗi một số trong 6 số này là một phần tử của tập hợp, chẳng hạn số 0 là một phần tử, số 1 cũng là một phần tử.

2. Các kí hiệu tập hợp

- Người ta thường đặt tên cho tập hợp bằng các chữ cái in hoa: A, B, C, D, ... và sử dụng các chữ cái thường a, b, c, ... để kí hiệu cho phần tử.

- Các phần tử của tập hợp được viết trong dấu ngoặc nhọn { }, cách nhau bởi dấu chấm phẩy dấu “;”. Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý.

- Phần tử x thuộc tập hợp A được kí hiệu là x  A, đọc là “x thuộc A”. Phần tử y không thuộc tập hợp A được kí hiệu là y  A, đọc là “y không thuộc A”.

Ví dụ: Tập hợp M gồm tất cả các số nhỏ hơn 5

Kí hiệu: M = {0; 1; 2; 3; 4} = {2; 1; 0; 3; 4}.

Mỗi số 0; 1; 2; 3; 4 đều là một phần tử của tập hợp M.

Số 6 không là phần tử của M (8 không thuộc M).

Ta viết: 0 ∈ M; 1 ∈ M; 2 ∈ M; 3 ∈ M; 4 ∈ M và 8 ∉ M.

3. Các cách cho một tập hợp

Nhận xét. Để cho một tập hợp, thường có hai cách:

• Liệt kê các phần tử của tập hợp.

• Chỉ ra tính chất đặc trưng cho các phần tử của tập hợp.

Ngoài 2 cách cho tập hợp như trên, người ta còn minh họa bằng hình vẽ (Sơ đồ Venn).

Ví dụ: Tập hợp A gồm tất cả các số tự nhiên nhỏ hơn 6.

- Liệt kê: A = {0; 1; 2; 3; 4; 5}.

- Chỉ ra tính chất đặc trưng: B = {x | x < 6}.

- Sơ đồ Venn:

Tập hợp, Phần tử của tập hợp | Lý thuyết Toán lớp 6 Chân trời sáng tạo

4. Tập rỗng

Tập rỗng là tập hợp không có phần tử nào, kí hiệu .

Ví dụ: Giả sử các học sinh lớp 6A không có bạn nào trên 55kg. Nên tập hợp các bạn trên 55kg của lớp 6A là tập rỗng.

B. Bài tập tự luyện

Bài 1. Cho E là tập hợp các số tự nhiên vừa lớn hơn 24 vừa nhỏ hơn 30. Điền kí hiệu ∈, ∉ thích hợp vào ô trống dưới đây.

25 ☐ E     5 ☐ E

30 ☐ E     28 ☐ E

Hướng dẫn giải

Các số tự nhiên vừa lớn hơn 24 vừa nhỏ hơn 30 là: 25; 26; 27; 28; 29.

Vì 25 thuộc tập hợp E nên ta kí hiệu 25  E.

Vì 5 không thuộc tập hợp E nên ta kí hiệu 5  E.

Vì 30 không thuộc tập hợp E nên ta kí hiệu 30  E.

Vì 28 thuộc tập hợp E nên ta kí hiệu 28  E.

Vậy ta điền kí hiệu vào ô trống như sau:

Tập hợp, Phần tử của tập hợp | Lý thuyết Toán lớp 6 Chân trời sáng tạo

Bài 2. Tập hợp M gồm tất cả các tháng (dương lịch) có 30 ngày. Hãy viết tập hợp M bằng cách liệt kê các phần tử của tập hợp.

Hướng dẫn giải
Các tháng dương lịch có 30 ngày gồm: tháng 4, tháng 6, tháng 9, tháng 11.

Vậy tập hợp M được viết bằng cách liệt kê các phần tử của tập hợp là:

M = {tháng 4; tháng 6; tháng 9; tháng 11}.

Bài 3. Cho tập hợp A gồm các số tự nhiên lớn hơn 4 nhưng không quá 10. Hãy viết tập hợp A bằng cách chỉ ra tính chất đặc trưng của tập hợp đó.

Hướng dẫn giải

Các phần tử của tập hợp A gồm các số tự nhiên lớn hơn 4 nhưng không quá 10.

Hay tập hợp A gồm các số tự nhiên lớn hơn 4 và nhỏ hơn hoặc bằng 10.

Tập hợp B gồm các phần tử là: 5; 6; 7; 8; 9; 10.

Vậy tập hợp B viết dưới dạng chỉ ra tính chất đặc trưng:

B = {x|4<x10}.

Xem thêm các bài tóm tắt lý thuyết Toán 6 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 1: Tập hợp, Phần tử của tập hợp

Lý thuyết Bài 2: Tập hợp số tự nhiên, Ghi số tự nhiên

Lý thuyết Bài 3: Các phép tính trong tập hợp số tự nhiên

Lý thuyết Bài 4: Lũy thừa với số mũ tự nhiên

Lý thuyết Bài 5: Thứ tự thực hiện các phép tính

Đánh giá

0

0 đánh giá