Với giải bài tập Toán lớp 6 Luyện tập chung trang 54 - 55 chi tiết bám sát nội dung sgk Toán 6 Tập 1 Kết nối tri thức với cuộc sống giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 6. Mời các bạn đón xem:
Giải bài tập Toán lớp 6 Luyện tập chung trang 54 - 55
Video giải Toán 6 Luyện tập chung trang 54 - 55 - Kết nối tri thức
Giải Toán lớp 6 trang 55 Tập 1
Bài 2.45 trang 55 Toán lớp 6 Tập 1: Cho bảng sau:
a |
9 |
34 |
120 |
15 |
2 987 |
b |
12 |
51 |
70 |
28 |
1 |
ƯCLN(a, b) |
3 |
? |
? |
? |
? |
BCNN(a, b) |
36 |
? |
? |
? |
? |
ƯCLN(a, b) .BCNN(a, b) |
108 |
? |
? |
? |
? |
a.b |
108 |
? |
? |
? |
? |
a) Tìm các số thích hợp thay vào ô trống trong bảng;
b) So sánh tích ƯCLN(a, b) . BCNN(a, b) và a.b.
Em rút ra kết luận gì?
Lời giải:
a)
+) Ở cột thứ hai:
a = 34 = 2.17; b = 51 = 3.17
⇒ ƯCLN(a; b) = 17 ; BCNN(a; b) = 2.3.17 = 102.
ƯCLN(a, b) . BCNN(a, b) = 17.102 = 1 734.
a.b = 34. 51 = 1 734.
+) Ở cột thứ ba:
a = 120 =23.3.5 ; b = 70 = 2.5.7
⇒ ƯCLN(a; b) = 2. 5 = 10 ; BCNN(a; b) = 23.3.5.7 = 840
ƯCLN(a, b) . BCNN(a, b) = 10. 840 = 8 400.
a.b = 120. 70 = 8 400.
+) Ở cột thứ tư:
a = 15 =3.5; b = 28 = 22.7
⇒ ƯCLN(a; b) = 1 ; BCNN(a; b) =
ƯCLN(a, b) . BCNN(a, b) =1. 420 = 420.
a.b = 15. 28 = 420.
+) Ở cột thứ năm:
a = 2 987; b = 1
⇒ ƯCLN(a; b) = 1 ; BCNN(a; b) = 2 987
ƯCLN(a, b) . BCNN(a, b) = 1 . 2 987 = 2 987.
a.b = 2 987 . 1 = 2 987
Ta có bảng sau:
a |
9 |
34 |
120 |
15 |
2 987 |
b |
12 |
51 |
70 |
28 |
1 |
ƯCLN(a, b) |
3 |
17 |
10 |
1 |
1 |
BCNN(a, b) |
36 |
102 |
840 |
420 |
2 987 |
ƯCLN(a, b) .BCNN(a, b) |
108 |
1 734 |
8 400 |
420 |
2 987 |
a.b |
108 |
1 734 |
8 400 |
420 |
2 987 |
b) So sánh: ƯCLN(a, b) . BCNN(a, b) = a.b
Em rút ra kết luận: tích của BCNN cà ƯCLN của hai số tự nhiên bất kì bằng tích của chúng.
Bài 2.46 trang 55 Toán lớp 6 Tập 1: Tìm ƯCLN và BCNN của:
a) 3.52 và 52.7
b) 22.3.5; 32.7 và 3.5.11
Lời giải:
a) 3.52 và 52.7
+) Ta thấy các thừa số nguyên tố chung là 5 và thừa số nguyên tố riêng là 3 và 7
+) Số mũ nhỏ nhất của 5 là 2 nên ƯCLN cần tìm là 52 = 25
+) Số mũ lớn nhất của 3 là 1, số mũ lớn nhất của 5 là 2, số mũ lớn nhất của 7 là 1 nên BCNN cần tìm là 3.52.7 = 525
Vậy ƯCLN cần tìm là 52 = 25
BCNN cần tìm là 3.52.7 = 525.
b) 22.3.5; 32.7 và 3.5.11
+) Ta thấy các thừa số nguyên tố chung là 3 và thừa số nguyên tố riêng là 2; 5; 7; 11
+) Số mũ nhỏ nhất của 3 là 1 nên ƯCLN cần tìm là 3
+) Số mũ lớn nhất của 2 là 2, số mũ lớn nhất của 3 là 2, số mũ lớn nhất của 5 là 1, số mũ lớn nhất của 7 là 1, số mũ lớn nhất của 11 là 1 nên BCNN cần tìm là 22.32.5.7.11 = 13 860
Vậy ƯCLN cần tìm là 3
BCNN cần tìm là 22.32.5.7.11 = 13 860.
a) b) .
Lời giải:
a) Vì ƯCLN(15, 17) = 1 nên phân số là phân số tối giản.
b) Ta có: 70 = 2.7.5; 105= 3.5.7
+) Thừa số nguyên tố chung là 5 và 7
+ Số mũ nhỏ nhất của 5 là 1, số mũ nhỏ nhất của 7 là 1 nên ƯCLN(70, 105) = 35.
Do đó không là phân số tối giản
Ta có: . Ta được là phân số tối giản vì ƯCLN(2, 3) = 1.
Lời giải:
Đổi 360 giây = 6 phút, 420 giây = 7 phút
Giả sử sau x phút họ lại gặp nhau.
Vận động viên thứ nhất chạy một vòng sân hết 6 phút nên x là bội của 6.
Vận động viên thứ hai chạy một vòng sân hết 7 phút nên x là bội của 7.
Suy ra x ∈ BC(6; 7).
Mà x ít nhất nên x = BCNN(6; 7).
6 = 2.3; 7 = 7
x = BCNN(6; 7) = 2.3.7 = 42
Vậy sau 42 phút họ lại gặp nhau.
Bài 2.49 trang 55 Toán lớp 6 Tập 1: Quy đồng mẫu các phân số sau:
a)
b)
Lời giải:
a) Ta có: 9 =32; 15 =3.5 nên BCNN(9, 15) = 32.5 = 45. Do đó ta có thể chọn mẫu chung là 45.
b) Ta có: 12 =22.3; 15 = 3.5 ; 27 = 33 nên BCNN(12, 15, 27) = 22.33.5 = 540. Do đó ta có thể chọn mẫu chung là 540.
Lời giải:
Các thanh gỗ có độ dài lớn nhất được cắt ra là ƯCLN(56, 48, 40)
Ta có: 56 = 23.7 ; 48 = 243 ; 40 = 23.5
Ta thấy thừa số nguyên tố chung là 2 và có số mũ nhỏ nhất là 3
Do đó ƯCLN(56, 48, 40) = 23 = 8
Vậy chiều dài các thanh gỗ lớn nhất có thể cắt là 8 dm.
Lời giải:
Học sinh lớp 6A khi xếp thành hàng 2, hàng 3, hàng 7 đều vừa đủ hàng.
Do đó số học sinh lớp 6A là BC(2, 3, 7)
BCNN(2, 3, 7) = 2.3.7 = 42 nên BC(2, 3, 7) = B(42) = {0; 42; 84, ...}
Mà số học sinh nhỏ hơn 45 nên số học sinh lớp 6A là 42.
Vậy số học sinh lớp 6A là 42 học sinh.
Lời giải:
Gọi số cần tìm là x.
Tích của hai số đã cho là (22.3.5).x
Tích của BCNN và ƯCLN của hai số đã cho là:
( 22.3.5).(22.5) = (23.22).3.(53.5) =25.3.54
Theo Bài tập 2.45, ta có tích của BCNN và ƯCLN của hai số tự nhiên bất kì thì bằng tích của hai số đó.
Do đó: ( 22.3.5). x = 25.3.54
x = (25.3.54) : (22.3.5)
x = (25 : 22).(3:3).(54 : 5)
x = (25-2).1.54-1
x = 23.53
Vậy số cần tìm là 23.53.
Xem thêm các bài giải SGK Toán lớp 6 Kết nối tri thức hay, chi tiết khác:
Bài 12: Bội chung. Bội chung nhỏ nhất
Bài 14: Phép cộng và phép trừ số nguyên