Trong không gian Oxyz, cho hai điểm A(3; 1; –2), B (2; –3; 5). Điểm M thuộc đoạn AB sao cho MA = 2MB, tọa độ điểm M là
B.
C.
Đáp án đúng là: C
Gọi M(x; y; z)
Vì điểm M thuộc đoạn AB và MA = 2MB nên . Khi đó,
Do đó
Phương pháp giải:
Tính chất: Cho a→ = (a1; a2; a3), b→ = (b1; b2; b3), k ∈ R
• a→ ± b→ = (a1 ± b1; a2 ± b2; a3 ± b3; )
• ka→ = (ka1; ka2; ka3)
• 0→ = (0; 0; 0), i→ = (1; 0; 0), j→ = (0; 1; 0), k→ = (0; 0; 1)
• a→ cùng phương b→ (b→ ≠ 0→) ⇔ a→ = kb→ (k ∈ R)
• a→.b→ = a1.b1 + a2.b2 + a3.b3
• a→ ⊥ b→ ⇔ a1b1 + a2b2 + a3b3 = 0
Bài tập liên quan:
Trong không gian Oxyz, cho A(-3;1;2), tọa độ điểm A’ đối xứng với điểm A qua trục Oy là
A. (3; -1; -2)
B. (3; -1; 2)
C. (3; 1; -2)
D. (-3; -1; 2)
Cách giải:
Tham khảo thêm một số tài liệu liên quan:
Trong không gian Oxyz, hình chiếu vuông góc của điểm A(1; 2; 5) trên trục Ox có tọa độ là
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x + 4y + 2z + 4 = 0 và điểm A(1; –2; 3). Tính khoảng cách d từ A đến (P).
Tính thể tích của vật thể tạo nên khi quay quanh trục Ox hình phẳng D giới hạn bởi đồ thị (P) : y = 2x – x2 và trục Ox bằng:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0; 1; 1) và B(1; 2; 3). Viết phương trình của mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.
Biết z là số phức có phần ảo âm và là nghiệm của phương trình z2 – 6z + 10 = 0. Tính tổng phần thực và ảo của số phức .