Trong không gian Oxyz, cho hai điểm A(-2; 3; 1) và B(5; 6; 2). Đường thẳng AB cắt mặt phẳng (Oxz) tại điểm M. Tỉ số bằng
A.
B. 2;
C.
D. 3.
Đáp án đúng là: A
Ta có:
Phương trình tham số của đường thẳng AB đi qua A(-2; 3; 1) nhận làm véc-tơ chỉ phương là
Gọi M là giao điểm của AB và mặt phẳng (Oxz) nên suy ra M(a; 0; b) thuộc AB
Từ đó suy ra M(-9; 0; 0)
Vậy ta có:
+)
+)
Từ đó suy ra được tỉ số
Diện tích hình phẳng giới hạn bởi hai đường y = x2 - 4 và y = 2x - 4 bằng
Cho hàm số y = f (x) có đạo hàm là f '(x) = 12x2 + 2, x ℝ và f (-1) = 3. Biết F (x) là nguyên hàm của f (x) thỏa mãn F (-2) = 2, khi đó F (1) bằng
Trong không gian Oxyz, cho hai điểm A(2; 4; 1); B(-1; 1; 3) và mặt phẳng (P): x - 3y + 2z - 5 = 0. Một mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P) có phương trình dạng ax + by + cz - 11 = 0. Khi đó a + b + c bằng
Trong không gian Oxyz, tọa độ một vectơ vuông góc với cả hai vectơ và là
Cho hàm số y = f (x) có đồ thị như hình vẽ và diện tích hai phần A; B lần lượt bằng 11; 2. Giá trị của bằng
Phương trình z2 + a.z + b = 0, với a, b là các số thực nhận số phức 1 - i là một nghiệm. Khi đó a - b bằng
Trong không gian Oxyz, cho mặt phẳng (Q) song với mặt phẳng (P): 2x - 2y + z - 7 = 0. Biết mặt phẳng (Q) cắt mặt cầu (S): x2 + (y - 2)2 + (z + 1)2 = 25 theo một đường tròn có bán kính r = 3. Khi đó mặt phẳng (Q) có phương trình là
Trong không gian Oxyz , cho hai điểm A(1; 1; 2), B(-1; 3; -9). Tọa độ điểm M thuộc Oy sao cho DABM vuông tại A là
Trong không gian Oxyz, cho 4 điểm A(2; 0; 2), B(1; -1; -2), C(-1;1 ; 0), D(-2; 1; 2). Thể tích của khối tứ diện ABCD bằng