Số điểm cực trị của hàm số là:
A. 3
B. 1
C. 4
D. 2
Đáp án A
Xét hàm số
TXĐ: D = R
Ta có:
BBT:
Từ BBT của đồ thị hàm số ta suy ra BBT của đồ thị hàm số như sau:
Từ BBT ta thấy hàm số có 3 điểm cực trị.
Phương pháp giải:
Ta có: do đó
Số điểm cực trị của hàm số là số nghiệm bội lẻ của phương trình
Như vậy: Nếu gọi m là số điểm cực trị của hàm số và n là số giao điểm của đồ thị hàm số và trục hoành thì là số điểm cực trị của hàm số (chú ý ta cần bỏ đi các nghiệm bội chẵn).
Định nghĩa Cực trị: Cho hàm số y = f(x)xác định và liên tục trên khoảng (a;b) (có thể a là -∞; b là +∞) và điểm x0∈(a;b).
Nếu tồn tại số h > 0 sao cho f(x)< f(x0 ) với mọi x ∈ (x0 - h;x0 + h) và x≠x_0 thì ta nói hàm số f(x) đạt cực đại tại x0.
Nếu tồn tại số h >0 sao cho f(x) >f(x0 ) với mọi x ∈ (x0 - h;x0 + h) và x ≠ x0 thì ta nói hàm số f(x) đạt cực tiểu tại x0.
Quy tắc tìm cực trị của hàm số
Quy tắc 1:
Bước 1. Tìm tập xác định của hàm số.
Bước 2. Tínhf'(x). Tìm các điểm tại đó f'(x)bằng 0 hoặc f'(x) không xác định.
Bước 3. Lập bảng biến thiên.
Bước 4. Từ bảng biến thiên suy ra các điểm cực trị.
Quy tắc 2:
Bước 1. Tìm tập xác định của hàm số.
Bước 2. Tính f'(x). Giải phương trình f'(x)và ký hiệuxi (i=1,2,3,...)là các nghiệm của nó.
Bước 3. Tính f''(x) và f''(xi ) .
Bước 4. Dựa vào dấu của f''(xi )suy ra tính chất cực trị của điểm xi.
Bài tập liên quan:
Cho hàm số . Hàm số có đồ thị như hình vẽ bên.
Hàm số có bao nhiêu điểm cực trị?
A. 5
B. 7
C. 4
D. 3
Cách giải:
Đáp án A
Đặt
Ta có:
Cho
(tất cả các nghiệm trên đều là nghiệm bội lẻ)
Bảng xét dấu :
Vậy hàm số có tất cả 5 điểm cực trị.
Tham khảo thêm một số tài liệu liên quan:
50 câu Trắc nghiệm Cực trị của hàm số – Toán 12
50 Bài tập trắc nghiệm về GTLN – GTNN của hàm số chứa dấu giá trị tuyệt đối 2023
Cho hàm số f (x) có bảng biến thiên như sau:
Số điểm cực trị của hàm số là:
Cho hàm bậc bốn y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Số điểm cực đại của hàm số là:
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ
Tìm tất cả các giá trị của m để hàm số có ba điểm cực trị
Cho hàm số . Hàm số có đồ thị như hình vẽ bên.
Hàm số có bao nhiêu điểm cực trị?
Cho hàm số y = f(x) có đồ thị như hình vẽ bên:
Trên đoạn , hàm số đã cho có mấy điểm cực trị?
Cho hàm bậc bốn y = f(x). Hàm số y = f'(x) có đồ thị như hình bên. Số điểm cực đại của hàm số là:
Cho hàm số f (x) có bảng biến thiên như sau:
Số điểm cực trị của hàm số là:
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ
Tìm tất cả các giá trị của m để hàm số có ba điểm cực trị
Cho hàm số y = f(x) có đồ thị như hình vẽ bên:
Trên đoạn , hàm số đã cho có mấy điểm cực trị?
Cho hàm số liên tục trên R đồng thời hàm số có đồ thị như hình vẽ bên, xác định số điểm cực trị của đồ thị hàm số