Gọi S là tập hợp các giá trị nguyên dương của m để hàm số đồng biến trên khoảng Số phần tử của S bằng:
A.1
B.2
C.3
D.0
Phương pháp giải:
Hàm số đồng biến trên
Giải chi tiết:
Xét hàm số:
TH1: Hàm số đã cho đồng biến trên
TH2: Hàm số đã cho đồng biến trên
có hai nghiệm phân biệt thỏa mãn
Kết hợp hai trường hợp ta được:
Lại có:
Vậy có 1 giá trị m thỏa mãn bài toán.
Đáp án A
Số các giá trị của tham số m để hàm số có giá trị lớn nhất trên bằng là:
Hàm số nào trong bốn hàm số sau có bảng biến thiên như hình vẽ sau?
Tìm tất cả các giá trị của tham số a để đồ thị hàm số có 3 đường tiệm cận.
Cho hình chóp tứ giác đều có cạnh đáy bằng a cạnh bên hợp với đáy một góc Gọi m là điểm đối xứng của C qua D, N là trung điểm của SC Mặt phẳng chia khối chóp thành hai phần. Tỉ số thể tích giữa hai phần (phần lớn trên phần bé) bằng:
Một hộp đựng 40 tấm thẻ được đánh số thứ tự từ 1 đến 40. Rút ngẫu nhiên 10 tấm thẻ. Tính xác suất để lấy được 5 tấm thẻ mang số lẻ và 5 tấm thẻ mang số chẵn, trong đó có đúng một thẻ mang số chia hết cho 6.
Có hai bút chì màu, các bút chì khác nhau. Hộp thứ nhất có 5 bút chì màu đỏ và 7 bút chì màu xanh. Hộp thứ hai có 8 bút chì đỏ và 4 bút chì màu xanh. Chọn ngẫu nhiên mỗi hộp một cây bút chì. Xác suất để có 1 cây bút chì màu đỏ và 1 cây bút chì màu xanh là:
Cho hàm số có đồ thị như hình vẽ bên.
Cho hàm số có đạo hàm liên tục trên R và có đồ thị hàm số như hình vẽ bên dưới. Xét hàm số và các mệnh đề sau:
I. Hàm số có 3 điểm cực trị.
II. Hàm số đạt cực tiểu tại
III. Hàm số đạt cực đại tại
IV. Hàm số đồng biến trên khoảng
V. Hàm số nghịch biến trên khoảng
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?