Cho tam giác ABC cân tại A có đường trung tuyến AD, G là trọng tâm. Trên tia đối của tia DA lấy điểm E sao cho DE = DG.
a) Chứng minh BG = GC = CE = BE.
a) Xét tam giác ABC cân tại A nên AB = AC (hai cạnh bên).
Xét ∆ABD và ACD có:
AB = AC (do ABC cân tại A),
DB = DC (do D là trung điểm của BC),
AD là cạnh chung
Do đó ABD = ACD (c.c.c)
Suy ra (hai góc tương ứng).
Mà (hai góc kề bù)
Nên
Suy ra AD vuông góc với BC.
Mặt khác D là trung điểm của BC
Do đó AD là đường trưng trực của đoạn thẳng BC.
Suy ra GB = GC (1)
Lại có điểm E nằm trên đường thẳng AD nên E cũng nằm trên đường trung trực của BC.
Do đó EB = EC (2)
Xét BGD và BED có:
,
BG là cạnh chung,
DG = DE (giả thiết)
Do đó ∆BGD = BED (hai cạnh góc vuông)
Suy ra BG = BE (3)
Từ (1), (2) và (3) suy ra BG = GC = CE = BE.
Vậy BG = GC = CE = BE.
Cho tam giác ABC có đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho DE = BD. Gọi M, N lần lượt là trung điểm của BC, CE. Gọi I, K lần lượt là giao điểm của AM, AN với BE. Chứng minh BI = IK = KE.
Cho tam giác ABC cân tại A có hai trung tuyến BM và CN cắt nhau tại G. Chứng minh:
a) BM = CN;
Cho tam giác ABC có trọng tâm G. Gọi M là trung điểm của BC. Trên tia đối của MG lấy điểm D sao cho MD = MG.
a) Chứng minh CG là trung tuyến của tam giác ACD.
c) Gọi I là trung điểm của BD; AI cắt BG tại F. Chứng minh AF = 2FI.
Cho tam giác nhọn ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Trên cạnh AC lấy điểm E sao cho AE = AC.
a) Chứng minh E là trọng tâm tam giác BCD.
Cho tam giác ABC đều và có G là trọng tâm.
a) Chứng minh GA = GB = GC.
b) Trên tia AG lấy điểm D sao cho GD = GA. Chứng minh tam giác BGD là tam giác đều.
b) Gọi M là trung điểm DC. Chứng minh ba điểm B, M, E thẳng hàng.