Cần thêm một điều kiện gì để mỗi tứ giác trong Hình 19 trở thành hình bình hành?
• Hình 19a):
Ta có và hai góc này ở vị trí so le trong nên AB // CD.
Để tứ giác ABCD là hình bình hành thì có hai trường hợp sau:
+) Trường hợp 1: Tứ giác ABCD có hai cặp cạnh đối song song. Do đó cần thêm điều kiện AD // BC.
+) Trường hợp 2: Tứ giác ABCD có cặp cạnh đối vừa song song, vừa bằng nhau. Do đó cần thêm điều kiện AB = CD.
• Hình 19b): Tứ giác EFGH đã có một cặp cạnh đối bằng nhau (EH = GF).
Để tứ giác EFGH là hình bình hành thì có hai trường hợp sau:
+) Trường hợp 1: Tứ giác EFGH có hai cặp cạnh đối bằng nhau. Do đó cần thêm điều kiện EF = GH.
+) Trường hợp 2: Tứ giác EFGH có cặp cạnh đối vừa song song, vừa bằng nhau. Do đó cần thêm điều kiện EH // GF.
• Hình 19c):
Ta có OQ = ON nên O là trung điểm của NQ.
Để tứ giác MNPQ là hình bình hành thì tứ giác MNPQ có hai đường chéo cắt nhau tại trung điểm của mỗi đường. Do đó cần thêm điều kiện O là trung điểm của MP.
• Hình 19d): Tứ giác STUV đã có một cặp góc đối bằng nhau .
Để tứ giác STUV là hình bình hành thì tứ giác STUV có cac cặp góc đối bằng nhau. Do đó cần thêm điều kiện .
Bài tập liên quan:
Cho hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Biết AC = 6 cm, BD = 8 cm. Tính độ dài cạnh của hình thoi ABCD.
Cách giải:
Do đó và .
Áp dụng định lí Pythagore vào DOAB vuông tại O, ta có:
AB2 = OA2 + OB2
Suy ra .
Vậy độ dài cạnh của hình thoi ABCD là 5 cm.
Tham khảo thêm một số tài liệu liên quan:
Lý thuyết Hình bình hành – Hình thoi (Chân trời sáng tạo) | Lý thuyết Toán lớp 8
20 câu Trắc nghiệm Hình bình hành – Hình thoi (Chân trời sáng tạo) - Toán lớp 8
Cho hình bình hành ABCD. Gọi I và K lần lượt là trung điểm của các cạnh AB và CD; E và F lần lượt là giao điểm của AK và CI với BD.
a) Chứng minh tứ giác AEFI là hình thang.
Quan sát Hình 10, cho biết ABCD và AKCH đều là hình bình hành. Chứng minh ba đoạn thẳng AC, BD và HK có cùng trung điểm O.
Cho hình thoi MNPQ có I là giao điểm của hai đường chéo.
a) Tính MP khi biết MN = 10 dm, IN = 6 dm.
.
b) Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Chứng minh rằng ba điểm E, O, F thẳng hàng.
Cho hình bình hành PQRS với I là giao điểm của hai đường chéo (Hình 4). Hãy chỉ ra các đoạn thẳng bằng nhau và các góc bằng nhau có trong hình.
Cho hình bình hành ABCD, kẻ AH vuông góc với BD tại H và CK vuông góc với BD tại K (Hình 20).
a) Chứng minh tứ giác AHCK là hình bình hành.
Cho tam giác ABC cân tại A, gọi M là trung điểm của BC. Lấy điểm D đối xứng với điểm A qua BC.
a) Chứng minh tứ giác ABDC là hình thoi.
Cho hình thoi ABCD, hai đường chéo AC và BD cắt nhau tại O. Biết AC = 6 cm, BD = 8 cm. Tính độ dài cạnh của hình thoi ABCD.
Cho tứ giác ABCD có các cạnh đối song song. Gọi O là giao điểm của hai đường chéo. Hãy chứng tỏ:
‒ Tam giác ABC bằng tam giác CDA.
‒ Tam giác OAB bằng tam giác OCD.
Một tứ giác có chu vi là 52 cm và một đường chéo là 24 cm. Tìm độ dài của mỗi cạnh và đường chéo còn lại nếu biết hai đường chéo vuông góc tại trung điểm của mỗi đường.
b) Gọi E, F lần lượt là trung điểm của AB và AC, lấy điểm O sao cho E là trung điểm của OM. Chứng minh hai tam giác AOB và MBO vuông và bằng nhau.