Với giải bài 6 trang 43 Toán lớp 6 Tập 1 Cánh diều chi tiết được biên soạn bám sát nội dung bài học Toán 6 Bài 10: Số nguyên tố. Hợp số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 6. Mời các bạn đón xem:
Giải Toán lớp 6 Bài 10: Số nguyên tố. Hợp số
Bài 6 trang 43 Toán lớp 6 Tập 1: Bạn An nới với bạn Bình: “Đầu tiên tôi có 11 là số nguyên tố. Cộng 2 vào 11 tôi được 13 là số nguyên tố. Cộng 4 vào 13 tôi được 17 cũng là số nguyên tố. Tiếp theo, cộng 6 vào 17 tôi được 23 cũng là số nguyên tố. Cứ thực hiện như thế, mọi số nhận được đều là số nguyên tố”. Hỏi cách tìm số nguyên tố của bạn An có đúng không?
Lời giải:
Cách tìm số nguyên tố của bạn An là không đúng vì ta thực hiện tiếp như sau:
+ Cộng 8 vào 23 ta được 31 là số nguyên tố
+ Cộng 10 vào 31 ta được 41 là số nguyên tố
+ Cộng 12 vào 41 ta được 53 là số nguyên tố
+ Cộng 14 vào 53 ta được 67 là số nguyên tố
+ Cộng 16 vào 67 ta được 83 là số nguyên tố
+ Cộng 18 vào 83 ta được 101 là số nguyên tố
+ Cộng 20 vào 101 ta được 121 KHÔNG phải là số nguyên tố vì 121 chia hết cho 11, do đó ngoài 2 ước là 1 và 121 thì số 121 còn có ước khác là 11 nên nó là hợp số.
Vậy cứ tiếp tục thực hiện theo cách của bạn An thì mọi số nhận được không phải tất cả đều là số nguyên tố, nên cách tìm này là sai.
Bài tập vận dụng:
Bài 1. Cho các số 36, 37, 69, 75. Trong các số đó:
a) Số nào là số nguyên tố? Vì sao?
b) Số nào là hợp số? Vì sao?
Lời giải:
a) Số 37 là số nguyên tố vì nó lớn hơn 1, chỉ có hai ước là 1 và 37.
b) Ta có
+ Số 36 có chữ số tận cùng là 6 nên nó chia hết cho 2.
Do đó số 36 là hợp số vì ngoài hai ước là 1 và 36, nó còn có ít nhất một ước nữa là 2.
+ Số 69 có tổng các chữ số là 6 + 9 = 15 chia hết cho 3 nên số 69 chia hết cho 3.
Do đó số 69 là hợp số vì ngoài hai ước là 1 và 69 thì nó còn có ít nhất một ước nữa là 3.
+ Số 75 có chữ số tận cùng là 5 nên nó chia hết cho 5.
Do đó 75 là hợp số vì ngoài hai ước là 1 và 75, nó còn có ít nhất một ước nữa là 5.
Bài 2. Chứng minh rằng mọi số nguyên tố lớn hơn 2 đều có dạng là 4n ± 1 với n là số tự nhiên bất kì.
Lời giải:
Khi chia một số tự nhiên a lớn hơn 2 cho 4 thì ta được các số dư là 0, 1, 2, 3. Trường hợp các số dư là 0 và 2 thì a là hợp số.
Thật vậy,
+ Với số dư là 0 thì a chia hết cho 4 nên a là hợp số
+ Với số dư là 2, ta có: a = 4n + 2
Vì 4 chia hết cho 2 nên , 2 chia hết cho 2
Do đó: nên a là hợp số
Ta xét trường hợp số dư là 1 và 3.
+ Với mọi trường hợp số dư là 1 ta có a = 4n + 1
+ Với mọi trường hợp số dư là 3 ta có a = 4n + 3 = 4n + 4 – 1 = 4(n + 1) – 1
Đặt n + 1 = m, khi đó a = 4m – 1
Từ đó suy ra điều phải chứng minh.
Xem thêm các bài giải bài tập Toán lớp 6 sách Cánh diều hay, chi tiết khác:
Hoạt động 1 trang 41 Toán lớp 6 Tập 1: a) Tìm các ước của mỗi số sau: 2, 3, 4, 5, 6, 7, 17, 34...
Luyện tập 2 trang 42 Toán lớp 6 Tập 1: Tìm các ước nguyên tố của: 23, 24, 26, 27...
Luyện tập 3 trang 42 Toán lớp 6 Tập 1: Viết hai số chỉ có ước nguyên tố là 3...
Bài 2 trang 42 Toán lớp 6 Tập 1: Hãy chỉ ra một số nguyên tố lớn hơn 40 và nhỏ hơn 50...
Bài 4 trang 42 Toán lớp 6 Tập 1: Tìm các ước nguyên tố của: 36, 49, 70...
Bài 5 trang 42 Toán lớp 6 Tập 1: Hãy viết ba số: a) Chỉ có ước nguyên tố là 2...