Hướng dẫn giải
Phương trình đường tròn có dạng: (x – a)2 + (y – b)2 = R2
Với (a; b) là tọa độ tâm I và R > 0 là bán kính của đường tròn
Xét(x + 3)2 + (y – 4)2 = 23 có:
a = –3, b = 4, R2 = 23 ⇒ R = \(\sqrt {23} \)
Vậy đường tròn (C) có tâm I(–3; 4) và bán kính R = \(\sqrt {23} \).
Phương trình nào dưới đây là phương trình của một đường tròn? Khi đó hãy tìm tâm và bán kính của nó.
x2 + 2y2 – 4x – 2y + 1 = 0.
Cho đường tròn (C), đường thẳng Δ có phương trình lần lượt là:
(x – 1)2 + (y + 1)2 = 2; x + y + 2 = 0.
Chứng minh rằng Δ là một tiếp tuyến của đường tròn (C).
Cho điểm A(4; 2) và hai đường thẳng d: 3x + 4y – 20 = 0, d’: 2x + y = 0.
Viết phương trình đường thẳng Δ đi qua A và vuông góc với d.
Tìm tâm và bán kính của đường tròn (C) trong các trường hợp sau:
(x – 2)2 + (y – 8)2 = 49;