Hướng dẫn giải
Từ cách xác định toạ độ của chất điểm M ta có
\(\left\{ {\begin{array}{*{20}{c}}{{x_M} = 3 + 5\sin t^\circ }\\{{y_M} = 4 + 5\cos t^\circ }\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_M} - 3 = 5\sin t^\circ }\\{{y_M} - 4 = 5\cos t^\circ }\end{array}} \right.\)
⇔ (xM – 3)2 + (yM – 4)2 = (5sin t°)2 + (5cos t°)2
⇔ (xM – 3)2 + (yM – 4)2 = 25(sin t°)2 + 25(cos t°)2
⇔ (xM – 3)2 + (yM – 4)2 = 25[(sin t°)2 + (cos t°)2]
⇔ (xM – 3)2 + (yM – 4)2 = 25.1
⇔ (xM – 3)2 + (yM – 4)2 = 25
Vậy chất điểm M luôn thuộc đường tròn (C) có tâm I(3; 4) và có bán kính R = \(\sqrt {25} \) = 5. Mặt khác gốc toạ độ O(0; 0) cũng thuộc đường tròn (C).
Do đó ta có: OM ≤ 2R = 10
Dấu bằng xảy ra khi và chỉ khi OM là đường kính của đường tròn (C), nghĩa là I là trung điểm của OM, điều đó tương đương với
\(\left\{ {\begin{array}{*{20}{c}}{{x_M} = 2{x_I} - {x_O} = 6}\\{{y_M} = 2{y_I} - {y_O} = 8}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{3 + 5\sin t^\circ = 6}\\{4 + 5\cos t^\circ = 8}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\sin t^\circ = \frac{3}{5}}\\{\cos t^\circ = \frac{4}{5}}\end{array}} \right. \Leftrightarrow t \approx 37\) (có t ∈ (0; 180)).
Vậy M(6; 8) thỏa mãn yêu cầu đề bài.
Phương trình nào dưới đây là phương trình của một đường tròn? Khi đó hãy tìm tâm và bán kính của nó.
x2 + 2y2 – 4x – 2y + 1 = 0.
Cho đường tròn (C), đường thẳng Δ có phương trình lần lượt là:
(x – 1)2 + (y + 1)2 = 2; x + y + 2 = 0.
Chứng minh rằng Δ là một tiếp tuyến của đường tròn (C).
Cho điểm A(4; 2) và hai đường thẳng d: 3x + 4y – 20 = 0, d’: 2x + y = 0.
Viết phương trình đường thẳng Δ đi qua A và vuông góc với d.
Tìm tâm và bán kính của đường tròn (C) trong các trường hợp sau:
(x – 2)2 + (y – 8)2 = 49;