Trong các hình sau, hình nào nội tiếp được trong một đường tròn:
Hình bình hành, hình chữ nhật, hình vuông, hình thang, hình thang vuông, hình thang cân? Vì sao?
Các hình nội tiếp được trong một đường tròn là:
+ Hình chữ nhật:
Hình chữ nhật ABCD có:
⇒ ABCD nội tiếp trong một đường tròn. Đường tròn đó là đường tròn đường kính AC.
+ Hình vuông:
Vì hình vuông là hình chữ nhật
⇒ Hình vuông cũng nội tiếp trong một đường tròn.
+ Hình thang cân:
Hình thang cân ABCD có:
⇒ ABCD nội tiếp trong một đường tròn.
Định nghĩa tứ giác nội tiếp
Tứ giác nội tiếp đường tròn là tứ giác có bốn đỉnh nằm trên đường tròn đó.
Định lý
- Trong một tứ giác nội tiếp, tổng số đo hai góc đối diện bằng .
- Nếu một tứ giác có tổng số đo hai góc đối diện bằng thì tứ giác đó nội tiếp được đường tròn.
Một số dấu hiệu nhận biết tứ giác nội tiếp
- Tứ giác có tổng hai góc đối bằng .
- Tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối với đỉnh đó.
- Tứ giác có bốn đỉnh cách đều một điểm (mà có thể xác định được). Điểm đó là tâm đường tròn ngoại tiếp tứ giác.
- Tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới cùng một góc .
Chú ý : Trong các hình đã học thì hình chữ nhật, hình vuông, hình thang cân nội tiếp được đường tròn.
Các dạng toán thường gặp
Dạng 1: Chứng minh tứ giác nội tiếp
Phương pháp:
Để chứng minh tứ giác nội tiếp, ta có thể sử dụng một trong các cách sau :
Cách 1. Chứng minh tứ giác có tổng hai góc đối bằng .
Cách 2. Chúng minh tứ giác có hai đỉnh kề nhau cùng nhìn cạnh chứa hai đỉnh còn lại dưới cùng một góc .
Cách 3. Chứng minh tứ giác có góc ngoài tại một đỉnh bằng góc trong tại đỉnh đối với đỉnh đó.
Cách 4. Tìm được một điểm cách đều bốn đỉnh của tứ giác.
Dạng 2: Chứng minh các góc bằng nhau, đoạn thẳng bằng nhau, các đường thẳng song song, hệ thức giữa các cạnh…
Phương pháp:
Sử dụng tính chất của tứ giác nội tiếp.
Tham khảo thêm một số tài liệu liên quan:
Lý thuyết Tứ giác nội tiếp hay, chi tiết - Toán 9
Cho tam giác đều ABC. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, lấy điểm D sao cho DB = DC và
a) Chứng minh tứ giác ABDC là tứ giác nội tiếp.
b) Xác định tâm của đường tròn đi qua bốn điểm A, B, D, C.
Xem hình 48. Chứng minh QR // ST.
Hướng dẫn: Xét cặp góc so le trong
Cho hình bình hành ABCD. Đường tròn đi qua ba đỉnh A, B, C cắt đường thẳng CD tại P khác C. Chứng minh AP = AD.