Tính số đưòng chéo của ngũ giác, lục giác, hình n - giác
- Từ mỗi đỉnh của ngũ giác vẽ được 2 đường chéo. Khi đó, vẽ được tất cả 2.5 = 10 đường chéo.
Vì mỗi đường chéo được tính hai lần nên ngũ giác có tất cả 5 đường chéo.
- Tương tự: lục giác từ 6 đỉnh vẽ được 3.6 = 18 đường chéo. Vì mỗi đường chéo được tính 2 lần nên lục giác có tất car9 đường chéo.
- Từ mỗi đỉnh của hình n - giác (lồi) vẽ được (n - 1) đoạn thẳng nối đỉnh đó với (n - 1) đỉnh còn lại của đa giác, trong đó hai đoạn thẳng trùng với hai cạnh của đa giác sẽ không tính vào số đường chéo.
Þ Qua mỗi đỉnh của hình n - giác vẽ được n - 1 - 2 = n - 3 đường chéo.
Þ Hình n - giác vẽ được n (n - 3) đường chéo
Vì mỗi đường chéo được tính 2 lần nên hình n - giác có tất cả đường chéo.
a) Tính tổng số đo các góc ngoài của tứ giác, ngũ giác, thập giác,
b) Chứng minh tổng số đo các góc ngoài của một đa giác (lồi) là 360°.
Cho hình thoi ABCD có = 60°. Gọi M, N, P, Q lần lượt là trung điểm các cạnh AB, BC, CD, DA. Chứng minh đa giác MBNPDQ là lục giác đều
Mỗi góc của một đa giác đều n cạnh bằng 120°. Tính số đường chéo của đa giác
a) Chứng minh tổng số đo các góc trong của một hình
n - giác là (n - 2)180°.
b) Tính tổng số đo các góc của một đa giác 12 cạnh.
Cho ngũ giác đều ABCDE. Hai đường chéo AC và BE cắt nhau tại điểm K. Chứng minh tứ giác ACDE là hình thang cân và CDEK là hình thoi.
Tìm một đa giác n cạnh mà số đường chéo của nó:
a) Bằng số cạnh; b) Bằng 1/3 số cạnh;
c) Bằng 2 lần số cạnh; d) Bằng 1/3 số cạnh
Chứng minh trung điểm các cạnh của một ngũ giác đều là các đỉnh của một ngũ giác đều
Cho tam giác ABC đều cạnh a. Vẽ về phía ngoài của tam giác ABC các hình chữ nhật ABEE, BCIJ và CAGH sao cho AF = BJ = CH = x.
a) Chứng minh
b) Tìm hệ thức liên hệ giữa x2 và a2 để hình lục giác EFGHIJ là lục giác đều
Cho lục giác ABCDEF. Kẻ các đường chéo AC, AD và AE. Kể tên các đa giác có trong hình vẽ.
Cho ngũ giác ABCDE. Kẻ các đường chéo AC và AD. Kể tên các đa giác có trong hình vẽ.
Tìm một đa giác mà tổng số đo các góc trong bằng tổng số đo các góc ngoài