Câu hỏi:

24/10/2024 22.6 K

Tính các giá trị lượng giác còn lại của góc α biết sinα = \[\frac{1}{3}\] và 90° < α < 180°.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Vì 90° < α < 180° nên cosα < 0.

Ta có: sin2α + cos2α = 1

Suy ra cosα = \( - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - \frac{1}{9}} = - \frac{{2\sqrt 2 }}{3}\).

Do đó \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} = - \frac{1}{{2\sqrt 2 }}\)

và \(\cot \alpha = \frac{1}{{\tan \alpha }} = - 2\sqrt 2 \).

Các giá trị lượng giác của góc lượng giác

– Hoành độ x của điểm M được gọi là côsin của α, kí hiệu là cos α.

cosα = x.

– Tung độ y của điểm M được gọi là sin của α, kí hiệu là sin α.

sinα = y.

– Nếu cosα ≠ 0, tỉ số sinαcosα được gọi là tang của α, kí hiệu là tanα.

tanα=sinαcosα=yx(x0).

– Nếu sinα ≠ 0, tỉ số cosαsinα được gọi là côtang của α, kí hiệu là cotα.

cotα=cosαsinα=xy(y0).

– Các giá trị cosα, sinα, tanα, cotα được gọi là giá trị lượng giác của α.

Chú ý:

– Ta còn gọi trục tung là trục sin, trục hoành là trục côsin.

– Từ định nghĩa ta suy ra:

+ sinα, cosα xác định với mọi giá trị của α và ta có:

–1 ≤ sinα ≤ 1; –1 ≤ cosα ≤ 1;

sin (α + k2ℼ) = sinα; cos (α + k2ℼ) = cosα (k ∈ ℤ).

+ tanα xác định khi απ2+kπ(k)

+ cotα xác định khi αkπ(k).

+ Dấu của các giá trị lượng giác của một góc lượng giác phụ thuộc vào vị trí điểm biểu diễn M trên đường tròn lượng giác.

Giá trị lượng giác của góc lượng giác (Lý thuyết Toán lớp 11) | Kết nối tri thức (ảnh 8)

Bài tập liên quan:

Cho góc α thỏa mãn sinα=1213 và 90° < α < 180°. Tính cosα.

Lời giải:

Vì 90° < α < 180° nên cosα < 0.

Do đó cosα=1sin2α=1(1213)2=25169=513.

Tham khảo thêm một số tài liệu liên quan:

Lý thuyết Hệ thức lượng trong tam giác (Kết nối tri thức) | Toán lớp 10

Trắc nghiệm Hệ thức lượng trong tam giác (Kết nối tri thức) – Toán lớp 10

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho góc α với 0° < α < 180°. Tính giá trị của cosα, biết \(\tan \alpha = - 2\sqrt 2 \) .

Xem đáp án » 09/11/2024 25.1 K

Câu 2:

Cho góc α thỏa mãn \(\sin \alpha = \frac{{12}}{{13}}\) và 90° < α < 180°. Tính cosα.

Xem đáp án » 15/11/2024 13.9 K

Câu 3:

Cho góc α (0° < α < 180°) với \(\cos \alpha = \frac{1}{3}\). Giá trị của sinα bằng:

Xem đáp án » 30/10/2024 13.8 K

Câu 4:

Cho \(\cos \alpha = \frac{1}{3}\). Tính \(A = \frac{{\tan \alpha + 4\cot \alpha }}{{\tan \alpha + \cot \alpha }}\).

Xem đáp án » 22/09/2024 4.7 K

Câu 5:

Cho góc α thỏa mãn \(\tan \alpha = 3\) và 0° < α < 90°. Tính P = cosα + sinα.

Xem đáp án » 24/12/2024 2.8 K

Câu 6:

Cho góc α thỏa mãn tanα = 5. Tính \(P = \frac{{2\sin \alpha + 3\cos \alpha }}{{3\sin \alpha - 2\cos \alpha }}\).

Xem đáp án » 22/07/2024 2.6 K

Câu 7:

Cho góc α (0° < α < 180°) thỏa mãn \(\cos \alpha = \frac{5}{{13}}\).

Giá trị của biểu thức \(P = 2\sqrt {4 + 5\tan \alpha } + 3\sqrt {9 - 12\cot \alpha } \) là:

Xem đáp án » 17/07/2024 2.1 K

Câu 8:

Cho góc α (0° < α < 180°) với \(\cot \alpha = - \sqrt 2 \). Tìm mệnh đề sai trong các mệnh đề sau:

Xem đáp án » 23/07/2024 552

Câu 9:

Tính giá trị của cosα biết 0° < α < 180°, α ≠ 90°, \(\sin \alpha = \frac{2}{5}\) và tanα + cotα > 0.

Xem đáp án » 16/07/2024 431

Câu 10:

Cho góc α với \(\cos \alpha = \frac{{\sqrt 2 }}{2}\). Tính giá trị của biểu thức A = 2sin2α + 5cos2α.

Xem đáp án » 18/07/2024 336

Câu 11:

Cho góc α thỏa mãn cotα = 3. Tính P = sin4α – cos4α.

Xem đáp án » 23/07/2024 335